

INTRODUCTION

- Simplantology, In Everything We Do!
- Smart Implantology Solutions Our Portfolio
- Nanotec™ Implant Surface
- Advanced Implant Package

KITS, DRILLS & TOOLS

- 12 Surgical Kit
- 14 Guided Surgery Tool Kit
- 15 Stopper Kit
- 16 Coated Drill Line
- 17 Surgical Drills and Trephines
- 18 Implants Insertion Tools
- 20 Prosthetics Insertion Tools
- 21 Surgical Accessories

IMPLANT PLATFORMS

CONICAL STANDARD CONNECTION

- 24 NeO Implant System
- 25 NeO Drilling Sequence
- 26 Insertion Tools
- 26 Healing Abutments
- 27 Implant Impression
- 27 Casting Abutments
- 28 Cement-retained Restoration
- 29 Screw-retained Restoration
- 32 Overdenture Restoration
- 34 CAD/CAM Restoration Implant Level
- 35 CAD/CAM Restoration Abutment Level
- 35 CAD/CAM Sirona Compatible

CONICAL HEX CONNECTION

- 36 NeO Implant System
- 36 NeO Drilling Sequence
- 37 NiCE Implant System
- 37 NiCE Drilling Sequence
- 38 Insertion Tools
- 38 Healing Abutments
- 39 Implant Impression 39 Casting Abutments
- 40 Cement-retained Restoration
- 42 Screw-retained Restoration
- 44 Overdenture Restoration
- 46 CAD/CAM Restoration Implant Level 47 CAD/CAM Restoration - Abutment Level
- 47 CAD/CAM Sirona Compatible

APPENDICES

- 68 Product List and Reference Numbers
- 82 Alpha-Bio Tec's Warranty

INTERNAL HEX CONNECTION

- 48 NeO Implant System
- 49 NeO Drilling Sequence
- 50 Spiral Implant System
- 51 Spiral Drilling Sequence
- 52 ICE Implant System
- 53 ICE Drilling Sequence 54 ATID Implant System
- 54 ATID Drilling Sequence
- 55 DFI Implant System
- 55 DFI Drilling Sequence
- 56 Insertion Tools
- Healing Abutments
- Implant Impression
- Cement-retained Restoration
- Casting Abutments
- **Prosthetic Screws**
- 62 Screw-retained Restoration
- Overdenture Restoration
- 66 CAD/CAM Restoration Implant Level
- 67 CAD/CAM Restoration Abutment Level
- 67 CAD/CAM Sirona Compatible

At Alpha-Bio Tec, we address the needs of dental professionals, leverage our experience and technologies, utilize experts and invest in research, training and education. All this results in Simplantology: cost-effective solutions that simplify dental implantology procedures and deliver proven clinical success.

WE DELIVER TOP-QUALITY, SIMPLE-TO-USE PRODUCTS

We have mastered the art of simplifying implant technology by developing a surgical kit that fits all our products implants, abutments and surgical tools. Our surgical kit includes basic surgical instrumentation to advanced therapy tools, and is compatible with all product systems. This means that fewer tools are needed to achieve successful results. It also simplifies work and minimize customer learning curves. With an overall implant clinical success rate of 99.6%*, our top-quality implant systems are based on two platforms and three connections, each has its own perfectly-fit restoration line.

WE LEVERAGE EXPERIENCE AND TECHNOLOGIES

We leverage our experience and technologies to ensure that our products offer the best value-for-money. For three decades, we have been focusing on the development and manufacturing of dental implants and their byproducts. Our cutting-edge, in-house manufacturing facility, which is operational 24/7, includes a dedicated QA department to ensure the highest possible standards and quality of our products and the provision of a lifetime warranty for our dental implants.

WE UTILIZE RESEARCH AND EXPERTS

Our R&D teams collaborate closely with an international panel of experts who have extensive clinical and academic knowledge. We also invest in preclinical in vivo research, clinical trials, histological studies and in vitro laboratory studies. We are also active in all research fields, including basic research, preclinical studies and clinical trials.

WE TRAIN AND EDUCATE OUR CUSTOMERS

We firmly believe that sharing our know-how and experience is central to ensuring successful and effective implantology work. Every year, we provide more than 150 courses around the world, where we train our customers concerning the latest dental implantology procedures and workflow methods. Course curriculums are based on theoretical background and practical tools covering a range of subjects, including basic implantology, tilted implantation & restoration, guided bone & tissue regeneration, immediate implantation and immediate loading, guided surgery and digital workflows.

WE ENABLE THE DIGITALIZATION OF THE DENTAL WORLD

We embrace the technological changes involved in the digitalization of the dental world in order to support the present and future needs of our customers. Consequently, our digital CAD/CAM line offers a wide range of restoration products for our three implant connections. Additionally, our Guided Surgery Tool Kit supports surgery methods and enables dentists to select the software to use when planning surgeries, making their work simpler, more precise and minimally invasive.

*Strietzel F.P., Karmon B., Lorean A., Fischer P. P. Implant-prosthetic rehabilitation of the edentulous maxilla and mandible with immediately loaded Implants preliminary data from a retrospective study, considering time of implantation. JOMI The international Journal of Oral and Maxillofacial Implants 2011, V 26,

IMPLANT SYSTEMS I

From Internal Hex implants to Conical Hex implants, we offer an entire range of implants, so that each physician can find the precise and most convenient implant to work with in any given moment.

PROSTHETICS & CAD/CAM

For each of our implant connections we offer a wide range of options for any clinical need, including fixed and removable restorations, screw based, cemented prosthesis and a wide range of digital CAD/CAM parts. The diameters for each prosthetic part are interchangeable according to preference and need. All parts are designed for ease of use and high esthetic appearance.

SURGICAL INSTRUMENTATION

Our universal surgical kit is another demonstration of Alpha-Bio Tec's commitment to simplicity. This one kit provides surgeons all the tools needed to perform most of the procedures from marking the drilling point to inserting the implant into its final position. Implant orientation tools for the final restoration are also included. Each kit can be customized to meet the dental professional needs. In addition, as digital enablers, Alpha-Bio Tec's Guided Surgery Tool Kit enables accurate and predictable implant procedures using the planning software of the dentist's choice.

Alpha-Bio Tec has mastered the art of incorporating implants and implant-based prosthetics into the daily routine of dental professionals, by developing products that are sophisticated by design and very simple to use.

Our implant systems cover a wide variety of surgical procedures for all bone types: immediate or delayed implant placement, immediate or delayed loading and implantation in wide or narrow ridges.

The implants are based on two platforms: the traditional internal hex and the conical platform, which consists of two connections: a conical standard connection (CS) and a conical narrow connection (CHC).

	Neo	Spiral*
CTION	Conical Hex, Internal Hex	Internal Hex
YPES	II, III, IV	III, IV
ES •	 Tapered Apical part with centering and anchoring features Two micro threads Platform switching 	 Osteotome-like condensing body Pronounced tapered core Apical part with sharp deep threads
ΛL • ΓS •	 Optimal primary stability High bone preservation Micro threads for 20% increased surface area Increased early BIC 	 High bone condensation High initial stability Self-drilling Redirection ability during placement Penetration to small diameters

^{*} Formally known as SPI.

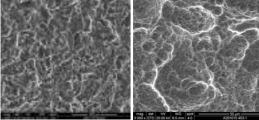
^{**} ICE implants with Ø4.2, Ø4.65 and Ø5.3 in lengths 10 mm and longer.

IMPLANT SURFACE

Worldwide scientific research has proven that achieving a proper implant surface is the key to reaching optimal Osseointegration. It has been well documented that surface characteristics of implanted materials highly influence the healing and growth of tissues adjacent to the implant surface.

Alpha-Bio Tec's implants are made of Titanium alloy Ti 6Al 4V ELI, a strong, durable and highly biocompatible material. Years of intense research and development lead Alpha-Bio Tec to develop the superior NanoTec™ implant surface for optimized osseointegration.

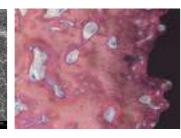
NanoTec™ implant surface is of a hybrid type and is achieved through a complex process that involves large (20-40 microns) particles sandblasting and a double thermal etching for the creation of micro pores (sized 1-5 microns). This unique process creates a high surface area differentiation, increases the three dimensional (3D) surface area and thus, enables a more intense absorption of blood and plasma proteins directly into the implant's micropores immediately after its placement.

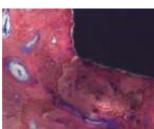

The micro-structure and roughness properties of the implant surface created by the sandblasting and double acid etching process, greatly influence the initial contact with the host bone.

State of the art surface treatment technologies in the Alpha-Bio Tec's manufacturing facility ensure unified surface treatment application and precision.

NanoTec[™] in combination with Alpha-Bio Tec MICRO design demonstrate the following advantages:

- Promotes early osseointegration
- High long-term BIC
- Increased secondary stability
- Higher predictability


SEM of implant surface



Magnification: X 1000

Magnification: X 3000

Histology of NeO Implant*

ADVANCED IMPLANT PACKAGE

Our implant systems come in a mountless package* and with advanced grip drivers (see page 18-19).

IMPLANT PACKAGE

A modern and easy-to-use package, designed for maximum comfort and enhanced ergonomics.

IDENTIFICATION LABELS

Label indicates the implant type, length, diameter and connection (CHC/CS/IH).

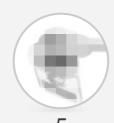
COLOR-CODED HOLDER

Holders are color-coded for easy identification of implant length.

STACK SEVERAL PACKAGES TOGETHER

The unique design enables the stacking of several packages together for maximum storage space efficiency.

Tear the cardboard.


Pull the Tyvek®.

Remove the inner holder.

Open the cap - easy one-hand operation.


Insert the preferred driver in a continuous clock wise and turn until hex is found. (Wrench is for illustration only)

Implant is now connected to the driver and can be removed. Verify there is no gap between the driver and the implant.

Implant can be inserted directly to site.

Remove cover screw using an appropriate prosthetic driver.

Note: Currently available only with NeO and ATID implants.

^{*} References: Light Microscopy images of the non-decalcified histology staining with Toluidine Blue - Fuchsin. Parietal bone of Sinclair mini pig. The study was performed at GLPigs, the Pre-Clinical Research Unit at Assaf Harofeh Medical Center, Israel. The surgeries were performed by Prof. Ofer Moses and Dr. Omer Cohen (Tel-Aviv University, Israel). Histology performed by Prof. Dr. Dieter D. Bosshardt from the Robert K. Schenk Laboratory of Oral Histology, University of Bern, Switzerland.

KITS, DRILLS &TOLS

Alpha-Bio Tec is dedicated to making the work of dental professionals as simple as possible. Therefore, we have developed one universal kit with all the tools needed to perform most of the clinical procedures. Each kit can be customized both in size and in tray content to meet clinical needs.

In addition, all drills and tools presented in this chapter, are compatible with all implant systems and prosthetic parts (unless indicated otherwise).

ONE KIT FOR ALL IMPLANT SYSTEMS

The same of the sa

SURGICAL KIT

Alpha-Bio Tec's surgical kit is suitable for all procedures and implant systems.

- Ergonomic, light and compact, easy to carry
- Clear, color-coded visual design, provides easy and intuitive accessibility
- Laser etched marking on the tray including a dimension bar for effective drill depth verification
- Easy cleaning and autoclaveable
- Box and tray are made of Radel[®]
- Stainless steel bath
- Box dimensions: 19 cm X 14 cm X 6 cm

ORDERING INFORMATION: REF. NO. 4699

Kit is provided empty. Tools and drills must be ordered separately.

MINI SURGICAL BOX

 $\label{eq:Alight} \textbf{A light and compact design for your individual needs.}$

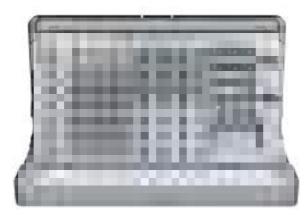
- Box and tray are made of Radel®
- Stainless steel bath
- Box dimensions: 10 cm X 8.5 cm X 5 cm

ORDERING INFORMATION:

REF. NO. 4611	Straight drills mini kit
REF. NO. 4774	Step drills mini kit
REF. NO. 4775	Step drills mini kit without dish

Kit is provided empty. Tools and drills must be ordered separately.

Coated drills


One kit for all implants Single hand opening option

Dimension bar for effective drill depth

Kit is provided empty. Tools and drills must be ordered separately.

GUIDED SURGERY TOOL KIT (GSTK)

- Ergonomically and carefully designed surgical kit.
- Includes a variety of drills and tools in a modular tray.
- The contents support the entire guided surgery procedure from site preparation to final implantation.
- All kit components fit the matching master sleeves in the surgical guide.

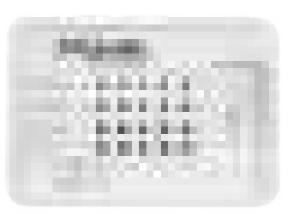
Kit does not include wrench.

GUIDED SLEEVES

The sleeves are available in several diameters and are used in the fabrication of the surgical guide.

	MASTER S	SLEEVE	SECURING SLEEVE	SLEEVE ADAPTOR	
	Used for guided drilling	and implant insertion	Used to support lateral pin	Used for adapting the small diameter drills to the large sleeve (SLL)	
	Ø4.1 mm	Ø5.5 mm	11	Ø4.1 mm	
	10	103	Ħ	8	
CODE	SLS	SLL	SLSE	SLSA	
REF. NO.	66012	66013	66014	65058	
INFO.	For Ø 3.2, Ø 3.3, Ø 3.5, Ø 3.7N and Ø 3.75 implants. 5 units in each pack.	For Ø 4.2, Ø 4.65, Ø 5 and Ø 5.3 implants. 5 units in each pack.	For 1.5 mm drill and lateral pin. 5 units in each pack.	Must be removed before implant insertion. See note* below	

NOTE: Implant placement via the guide is compatible with the NeO and ATID implants only.


ORDERING INFORMATION:

The kit is available in three different configurations:

ENTRY-LEVEL OPTION	REF. NO. 65002	Full guided surgery kit for Conical Standard (CS) and Conical Hex Connection (CHC).
ENTRY-LEVEL EXTENSION	REF. NO. 65003	Full guided surgery kit for Internal Hex (IH), Conical Standard (CS) and Conical Hex Connection (CHC).
FULL KIT	REF. NO. 65000	Full guided surgery kit for Internal Hex (IH) and Conical Hex Connection (CHC).

STOPPER KIT

- Compact, ergonomic and esthetic design.
- Properly organized, all parts are clearly visible and easily accessed.
- Laser markings on both box and stoppers.
- Easy cleaning and autoclavable.
- Dedicated stoppers extractions grooves.
- Stoppers prevent bone heating during the osteotomy preparation.
- Materials: Box Radel®, Cover PPHT.
- Dimension: 13 cm X 9.5 cm X 3 cm.

Kit is provided with 20 stoppers.

ORDERING INFORMATION: REF. NO. 4612

DRILL STOPPERS

55					
DRILL DIAMETER		GR	OUP A: Ø 2.0 - Ø 2	2.4	
DRILL DEPTH	L6	L8	L10	L11.5	L13
REF. NO.	4561	4562	4563	4564	4565
DRILL DIAMETER		GR	OUP B: Ø 2.8 - Ø 3	3.0	
DRILL DEPTH	L6	L8	L10	L11.5	L13
REF. NO.	4566	4567	4568	4569	4570
DRILL DIAMETER		GR	OUP C: Ø 3.2 - Ø 3	.65	
DRILL DEPTH	L6	L8	L10	L11.5	L13
REF. NO.	4573	4574	4575	4576	4577
DRILL DIAMETER		GR	OUP D: Ø 4.1 - Ø 4	1.5	
DRILL DEPTH	L6	L8	L10	L11.5	L13
REF. NO.	4578	4579	4580	4581	4582

COATED DRILL LINE

- A comprehensive, easy to use drill line
- Color coded
- High contrast and clear depth marks
- Multi-layer dark grey coating
- Long life span and high corrosion resistant
- Custom design gains minimal heat and maximal stability

• Compatible with all drill stoppers

COATED **STRAIGHT** DRILLS

	\bigcirc									\bigcirc	
	Ø 2.0	Ø 2.4	Ø 2.8	Ø 3.0	Ø 3.2	Ø 3.65	Ø 4.1	Ø 4.5	Ø 4.8	Ø 5.2	Ø 5.8
Code	BD2.0	BD2.4	BD2.8	BD3.0	BD3.2	BD3.65	BD4.1	BD4.5	BD4.8	BD5.2	BD5.8
Ref. No.	4550	4551	4552	4553	4554	4555	4556	4557	4558	4559	4560

COATED **STEP** DRILLS

	\bigcirc								\bigcirc
	Ø 2.0/2.4	Ø 2.4/2.8	Ø 2.8/3.0	Ø 2.8/3.2	Ø 3.2/3.65	Ø 3.65/4.1	Ø 4.1/4.5	Ø4.5/4.8	Ø4.8/5.2
Code	BSD2.0-2.4	BSD2.4-2.8	BSD2.8-3.0	BSD2.8-3.2	BSD3.2-3.65	BSD3.65-4.1	BSD4.1-4.5	BSD4.5-4.8	BSD4.8-5.2
Ref. No.	4590	4592	4593	4594	4595	4596	4597	4598	4599

SURGICAL DRILLS AND TREPHINES

	COLINITEDEINIK (CTA	INTEGC CTEEL		
	COUNTERSINK (STA	MINLESS STEEL)	7.8 mm -	− Ø 5 mm
l	DIAMETER	2.7-5.9 mm	5.55 mm — 4.5 mm — 2.5 mm — 0 mm —	— Ø 4.2 mm — Ø 3.85 mm — Ø 2.7 mm
ı	CODE	CS		
ь	REF. NO.	4672		
	INSTRUCTIONS	For preparation of a bevel within the cortical plate of the alveolar crest		

DRILL EXTENSION (STAINLESS STEEL)

i	DIAMETER	For all drills
	CODE	DX
	REF. NO.	4240
	INSTRUCTIONS	Extends drills by 17.5 mm

MARKING DRILL (STAINLESS STEEL)

DIAMETER	1.5 mm
CODE	MRDX1.5
REF. NO.	4712C
INSTRUCTIONS	For center-launching marking of the cortical plate of the alveolar crest

ROUND BURR (STAINLESS STEEL)

DIAMETER	2.3 mm	3 mm	4 mm	
CODE	RB2.3	RB3	RB4	
REF. NO.	4303	4304	4305	
INSTRUCTIONS	For various bone manipulations, such as penetration of the cortical plate to the alveola			

TREPHINE BURS (STAINLESS STEEL)

J	DIAMETER	4 mm	5 mm
16mm — 15mm — 13mm —	CODE	DRT4	DRT5
13mm— 11.6mm— 10mm— 8mm—	REF. NO.	4940	4950
6mm —	INSTRUCTIONS	For bone harvesting and implant removal	
997	7.		

IMPLANTS INSERTION TOOLS

Conical Standard Connection (CS)

Conical Narrow

Connection (CHC)

MANUAL DRIVER 2.5 MM

LENGTH	12 mm
CODE	MITD2.5-CS
REF. NO.	3806
INSTRUCTIONS	For manual use

INSERTION DRIVERS 2.5 MM

LENGTH	16 mm	10 mm
CODE	ITD2.5 L CS	ITD2.5 S CS
REF. NO.	3803	3801
INSTRUCTIONS	Fits hexagonal 6.35 mm or square 4 mm ratchet	

MOTOR MOUNT 2.5 MM

LENGTH	23 mm	16 mm
CODE	IT2.5 LM CS	IT2.5 SM CS
REF. NO.	3805	3804
INSTRUCTIONS	To be used with a contra angle motor	

MANUAL DRIVER 2.1 MM

LENGTH	12 mm
CODE	MITD2.1-CHC
REF. NO.	4147
INSTRUCTIONS	For manual use

INSERTION DRIVERS 2.1 MM

LENGTH	20 mm	15 mm	10 mm
CODE	ITD2.1L-CHC	ITD2.1-CHC	ITD2.1S-CHC
REF. NO.	7301	7305	7302
INSTRUCTIONS	Fits hexagonal 6.35 mm or so	quare 4 mm ratchet	

MOTOR MOUNT 2.1 MM

LENGTH	23 mm	16 mm
CODE	IT2.1L M-CHC	IT2.1S M-CHC
REF. NO.	7303	7304
INSTRUCTIONS	To be used with a contra angle motor	

IMPLANTS INSERTION TOOLS

MANUAL DRIVER 2.5 MM LENGTH 12 mm

L	ENGTH	12 mm
C	CODE	MITD2.5-IH
R	EF. NO.	4146
11	NSTRUCTIONS	For manual use

INSERTION DRIVERS 2.5 MM

LENGTH	16 mm	10 mm	6 mm
CODE	G-ITDL2.5	G-ITDM2.5	G-ITDS2.5
REF. NO.	4140	4141	4142
INSTRUCTIONS	Fits hexagonal 6.35 mm	or square 4 mm ratchet or surgical	screwdriver

MOTOR MOUNT 2.5/1.25 MM

LENGTH	23 mm	16 mm
CODE	GITL2.5/1.25	GITS2.5/1.25
REF. NO.	4143	4145
INSTRUCTIONS	To be used with a contra angle motor	

INSERTION DRIVERS* (STAINLESS STEEL)

E	TYPE	Manual	2.5 mm Long	2.5 mm	2.5 mm Short
7	CODE	HTW	ITD 2.5	ITD 2.5 S	ITD 2.5 SS
	REF. NO.	4014	4151	4152	4153
	INSTRUCTIONS	Compatible with 6.35 mm hex drivers	Compatible with hexagor or surgical screw driver	nal 6.35 mm or square 4 mr	n wrench

CONTRA-ANGLE DRIVERS* (STAINLESS STEEL)

TYPE	Motor Mount 2.5/1.25 mm	Short Motor Mount 2.5/1.25 mm	Motor Mount 2.5 mm	Short Motor Moun 2.5 mm
CODE	IT 2.5M+	ITS 2.5/1.25	IT 2.5	ITS 2.5
REF. NO.	4161	4071	4073	4072
INSTRUCTIONS	Used for implant ins cover screws, healin 1.25 mm screws.	0 0	Used for implant ins	ertion (2.5 mm).

 $^{^{\}ast}$ Compatible only with Spiral, DFI and ICE packages.

PROSTHETICS INSERTION TOOLS

HEX DRIVERS 1.25 MM* (STAINLESS STEEL)

MANUAL SCREW DRIVERS

4	_
	-
	-
я	
7	Ψ.

LENGTH	13 mm	7 mm
CODE	HHS 1.25	HHSS 1.25
REF. NO.	4052	4053
INSTRUCTIONS	Manually used with screw gripping	

HEX DRIVERS

INSTRUCTION	NS Fits hexagonal 6.35 i	mm or square 4 mm ratchet or ratc	het torque
REF. NO.	4061	4055	4056
CODE HTD 1.25 L		HTD 1.25	HTD 1.25 S
LENGTH	20 mm	14.5 mm	11.5 mm

MOTOR MOUNT

LENGTH	21 mm
CODE	HT 1.25M
REF. NO.	4165
INSTRUCTIONS	To be used with a contra angle handpiece

HEX DRIVERS 1.5 MM** (STAINLESS STEEL)

MANUAL HEX DRIVERS

LENGTH	13 mm	7 mm
CODE	HHL 1.5	HHS 1. 5
REF. NO.	4060	4059
INSTRUCTIONS	For manual use	

HEX DRIVERS

	4058
REF. NO. 4057	
CODE HTD 1.5	HTD 1.5 S
LENGTH 14.5 mm	7 mm

MOTOR MOUNT

LENGTH	21 mm
CODE	HT 1.5
REF. NO.	4168
INSTRUCTIONS	To be used with a contra angle motot

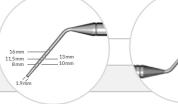
^{*} Compatible with all healing abutments, cover screws, transfer screws and most abutments.

SURGICAL ACCESSORIES FOR ALL IMPLANTS

PARALLEL/DEPTH GUIDES (TITANIUM)

LENGTH	16 mm	10 mm
CODE	PDG	PDGS
REF. NO.	4080	4081

INSTRUCTIONS For accurate measurement of osteotomy depth, parallel check and X-ray distortion. Each step is 1 mm.


REF. NO.

INSTRUCTIONS

PARALLEL GUIDE (TITANIUM)

İ	CODE	PG
	REF. NO.	4082
	NSTRUCTIONS	Used for precise spacing and parallel implant placement.

Double sided measuring probe:

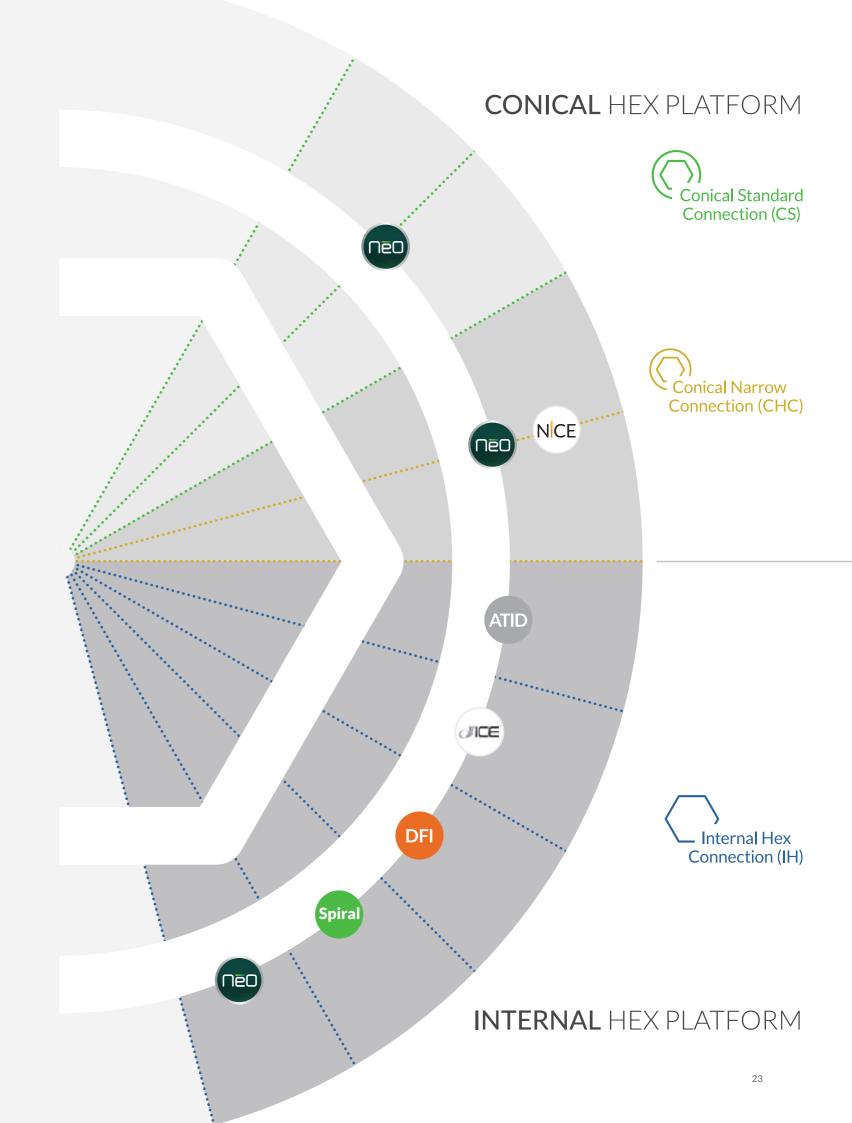
4100

- 1.9 mm width of the rounded apex is used for examination of osteotomy made by 2 mm drill.

- 2.7 mm width of the rounded apex is used for examination of osteotomy made by 2.8 mm drill. ${\sf Can\,be\,used\,in\,various\,treatments,\,such\,as:\,checking\,osteotomy\,depth,\,examination\,of\,the}$ Schneiderian membrane, bone condensing, etc.

CODE	SDH
REF. NO.	4220
INSTRUCTIONS	Used with 6.35 mm hexagonal head.

UNIVERSAL TORQUE/RATCHET 10-45 Ncm (STAINLESS STEEL)


CODE	URT
REF. NO.	4572
INSTRUCTIONS	Allows clinicians to accurately apply the recommended torque when using prosthetic or surgical drivers.

^{**} For use with Multi Unit straight abutments only (TCT). See pages 29, 43, 62.

IMPLANT PLATFORMS

Alpha-Bio Tec's portfolio consists of two platforms, Internal Hex and Conical Hex. The Internal Hex platform includes all the traditional well-known implant systems, which allow a simple and efficient practice for the restoration procedure as all implants fit the same prosthetic line. The different systems cover various clinical cases, from the simplest to the most complicated ones.

Our Conical Hex platform provides solutions for narrow alveolar ridges and limited spaces as well as for cases requiring high level of esthetics. The development focused on a design that preserves the soft tissue and enhances esthetic results. In addition, the conical connection improves the implantabutment fit.

NEO SYSTEM THE NEXT SENSATION

__neo

BONE TYPES

II, III, IV

Tapered

UNIQUE DESIGN FEATURES

- Apical part with centering and anchoring features
- Two micro threads
- Platform switching
- Optimal primary stability

CLINICAL BENEFITS

- High bone preservation
- Micro threads for 20% increased surface area
- Increased early BIC

ORDERING INFORMATION

	Ø 3.75	Ø 4.2	Ø 5.0
8 mm	1138	1148	1158
10 mm	1130	1140	1150
11.5 mm	1131	1141	1151
13 mm	1133	1143	1153
16 mm	1136	1146	N/A

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STEP DRILLING SEQUENCE

NEO SYSTEM THE NEXT SENSATION

Soft Bone Type IV		ne Type IV	Medium Bone Type II & III			Hard Bone Type I				
	Ø2.0	Ø2.4/Ø2.8	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø3.2/Ø3.65 Cortical*	
Ø 3.75			\bigcirc			\bigcirc				

	Soft Bone Type IV			Medium Bone Type II & III			Hard Bone Type I				
Ø 4.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø 2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø 2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø3.65/Ø4.1 Cortical*	
94.2											

	Soft	Bone Typ	oe IV	Ме	dium Bor	ne Type II &	k III			Hard Bo	ne Type I			
Ø 5.0	Ø2.0	Ø2.4 / Ø2.8	Ø 3.2 / Ø 3.65	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø3.65 / Ø4.1	Ø2.0	Ø2.4 / Ø2.8	Ø 3.2 / Ø 3.65	Ø3.65 / Ø4.1	Ø4.1 / Ø4.5	Ø4.5 / Ø4.8 Cortical*	
95.0				\bigcirc				\bigcirc						

 $[\]mbox{\bf ^*}$ $\mbox{\bf Cortical}$ – Drill through cortical plate with the larger diameter.

STRAIGHT DRILLING SEQUENCE

	Sof	ft Bone Type	e IV	Mediu	m Bone Type	e II & III		Hard Bo	ne Type I		
Ø 3.75	Ø2.0	Ø2.4	Ø2.8**	Ø2.0	Ø 2.8	Ø 3.2**	Ø2.0	Ø2.8	Ø 3.2**	Ø 3.65 Cortical*	
				\bigcirc							

	Soft	Bone Typ	e IV	Me	edium Bon	e Type II &	k III		Har	d Bone Ty	/pe l		
	Ø 2.0	Ø2.8	Ø 3.2**	Ø2.0	Ø2.8	Ø3.2	Ø 3.65**	Ø2.0	Ø2.8	Ø3.2	Ø 3.65**	Ø 4.1 Cortical* /	
Ø 4.2												Cortical	

	S	oft Bon	e Type l	IV	Ν	1edium	Bone Ty	/pe II & I	II			Hard	Bone T	ype I			
	Ø2.0	Ø 2.8	Ø 3.2	Ø 3.65**	Ø2.0	Ø 2.8	Ø 3.2	Ø 3.65	Ø 4.1**	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65	Ø4.1	Ø4.5**	Ø4.8 Cortical*/	
Ø 5.0					\bigcirc					\bigcirc						_ (

^{*} Cortical - Drill through cortical plate

^{** 3}mm shorter than implant's length. Note that drill can be replaced by a corresponding step drill throughout entire implant's length. For more information, see Step protocol.

INSERTION TOOLS & HEALING ABUTMENTS

IMPLANT INSERTION TOOLS

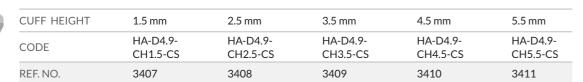
MANUAL DRIVER 2.5 MM

LENGTH	12 mm	
CODE	MITD2.5-CS	
REF. NO.	3806	
INSTRUCTIONS	For manual use	

INSERTION DRIVERS 2.5 MM

LENGTH	15 mm	10 mm
CODE	ITD2.5 L CS	ITD2.5 S CS
REF. NO.	3803	3801
INSTRUCTIONS	Fits hexagonal 6.35 mm or square 4 mm ratchet	

MOTOR MOUNT 2.5 MM


LENGTH	23 mm	16 mm
CODE	IT2.5 LM CS	IT2.5 SM CS
REF. NO.	3805	3804
INSTRUCTIONS	To be used with a contra angle motor	

HEALING ABUTMENTS*

Ø 4.0

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm
CODE	HA-D4- CH1.5-CS	HA-D4- CH2.5-CS	HA-D4- CH3.5-CS	HA-D4- CH4.5-CS	HA-D4- CH5.5-CS
REF. NO.	3401	3402	3403	3404	3405

Ø 4.9

Ø 6.2

CUFF HEIGHT	1.5 mm	2.5 mm
CODE	HA-D6.2-CH1.5-CS	HA-D6.2-CH2.5-CS
REF. NO.	3412	3413

 $^{^{\}ast}$ Recommended closing torque: 10Ncm max.

IMPRESSION & CASTING

IMPLANT IMPRESSION

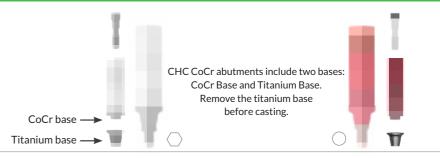
OPEN TRAY TRANSFERS

•	DIAMETER	Ø 4.7	Ø 4.7	
Д.	LENGTH	15 mm	19 mm	
#	CODE	CTT-CS	CTTS-CS	
₩.	REF. NO.	3455	3456	
	INSTRUCTIONS	Use with 1.25 driver. Note: Recommended closi	ng torque: 10Ncm max.	

CLOSED TRAY TRANSFERS

3.2 mm	DIAMETER	Ø 4.7	Ø 4.7
М.	LENGTH	12 mm	15 mm
	CODE	SCTT-CS	LCTT-CS
₩.	REF. NO.	3450	3451
7	INSTRUCTIONS	Use with 1.25 driver. Note: Recommended closin	ng torque: 10Ncm max.

PLASTIC TRANSFER PICK-UP


INSTRUCTIONS	For use with abutments 3501, 3502, 3503 and 3504.
REF. NO.	5364
CODE	IA-CS

Ø 3.75 mm

ANALOG

DIAMETER	Ø 3.75	
CODE	IA-CS	
REF. NO.	3459	

CASTING ABUTMENTS**

COCR MELTING TEMPERATURE	>1290°C - 1380°C	>1290°C - 1380°C
CODE	CoCr-AR-CHCS	CoCr-R-CHCS
REF. NO.	3846	3847
The product design includes two detachable parts: INSTRUCTIONS 1. Titanium base 2. Plastic sleeve with CoCr base. Please refer to product's IFU for more inform		

 $[\]ensuremath{^{**}}$ Reccommended closing torque: 30Ncm.

CEMENT-RETAINED RESTORATION

SCREW-RETAINED RESTORATION

ESTHETIC ABUTMENTS*

STRAIGHT Ø 4.8

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm	4.5 mm
CODE	TLA-H1.5-CS	TLA-H2.5-CS	TLA-H3.5-CS	TLA-H4.5-CS
REF. NO.	3501	3502	3503	3504
INSTRUCTIONS	Recommended closing torque: 30 Ncm.			

ANGLED ABUTMENTS*

15°

CUFF HEIGHT	1.5 mm	2.5 mm
CODE	TLA-15-H1.5-CS	TLA-15-H2.5-CS
REF. NO.	3511	3512
INSTRUCTIONS	ICTIONS Recommended closing torque: 30 Ncm.	

25°

CUFF HEIGHT	1.5 mm	2.5 mm	
CODE	TLA-25-H1.5-CS	TLA-25-H2.5-CS	
REF. NO.	3514	3515	
INSTRUCTIONS Recommended closing torque: 30 Ncm.			

TEMPORARY ABUTMENTS*

CUFF HEIGHT	1.5 mm	1.5 mm
CODE	TA-AR-CS (Engaged)	TA-R-CS (Non-engaged)
REF. NO.	3532	3533
INSTRUCTIONS	Use 1.25 mm driver with 30 Ncm torque.	

SCREW*

USE	For clinic	Retrieval
CODE	STLA-CS	RS
REF. NO.	3510	5110**
INSTRUCTIONS	CS Abutment screw (Included in package)	

^{*} Reccommended closing torque: 30Ncm.

MULTI-UNIT ANGLED ABUTMENTS

70

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm
CODE	AU 17-1.5-CS	AU 17-2.5-CS	AU 17-3.5-CS
REF. NO.	3862	3863	3864
INSTRUCTIONS	Use 1.25 mm driver witl	n 30 Ncm torque.	

30°

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm
CODE	AU 30-1.5-CS	AU 30-2.5-CS	AU 30-3.5-CS
REF. NO.	3867	3868	3869
INSTRUCTIONS	Use 1.25 mm driver wit	h 30 Ncm torque.	

MULTI-UNIT STRAIGHT ABUTMENTS – FOR RESTORATION OF UP TO 30° DIVERSION BETWEEN TEETH

CUFF HEIGHT	0.5 mm	1.5 mm	2.5 mm
CODE	TCT-0.5-CS	TCT-1.5-CS	TCT-2.5-CS
REF. NO.	3870	3871	3872
INSTRUCTIONS	Use 1.5 mm driver for insertion (see page 20). Recommended closing torque: 30 Ncm Supra structure on top of the abutments remains the same and can be used with Alpha Universe products, except for AR products. For digital restoration process use rotational scan body 3883.		ne and can be used with

 $^{^{}st}$ Not recommended for single tooth restorations.

STRAIGHT ABUTMENTS - FOR SINGLE IMPLANT RESTORATION

CUFF HEIGHT	0.5 mm	1.5 mm	2.5 mm
CODE	HBC-H0.75-CS	HBC-H1.5-CS	HBC-H2.5-CS
REF. NO.	3876	3877	3878
Use 1.25 mm driver with 30 Ncm torque. Abutments are supplied with a screw and a plastic burnout sleeve.			

^{**} Fits IH and CS platforms.

SCREW-RETAINED RESTORATION

SCREW-RETAINED RESTORATION

HEALING ABUTMENTS

CUFF HEIGHT	4 mm	6 mm
CODE	HCT4-N	HCT6-N
REF. NO.	5236	5237
INSTRUCTIONS	Provided with an integral s	crew. Recommended closing torques 10 Ncm.

TRANSFERS AND ANALOG

]	TYPE	Open Tray Transfer	
.0mn	CODE	TST-N	TCT-N-R
	REF. NO.	5231 (Engaged) <u></u>	5248 (Non-engaged)
	INSTRUCTIONS	Provided with 6012 screw. Recommended to close	manually.

TYPE	Closed Tray Transfer
CODE	TS-N
REF. NO.	5235
INSTRUCTIONS	Recommended to close manually.

TYPE	Analog	
MATERIAL	Titanium	
CODE	BTT-N	
REF. NO.	5211	

TEMPORARY ABUTMENT

,	INSTRUCTIONS	Recommended closing torque: 25 Ncm. Provided with 6092 screw.
	REF. NO.	5216
	CODE	TTA-N
	MATERIAL	Titanium

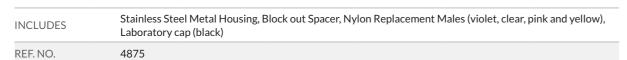
BURNOUT SLEEVES

MATERIAL	Plastic	Plastic
CODE	PST-N-AR	PST-N
REF. NO.	5217 (Engaged) <u></u>	5218 (Non-engaged)
INSTRUCTIONS	Recommended closing manually only (without too	ol). Provided with 6093 screw.
	CODE REF. NO.	CODE PST-N-AR REF. NO. 5217 (Engaged)

SCREW FIXATION

MATERIAL	Titanium	Black coated titanium
CODE	SF-N	SFT-N
REF. NO.	6092	6093
INSTRUCTIONS	Use HTD 1.25 mm for insertion. Screw 6093 is f	or laboratory use only.

OVERDENTURE RESTORATION



ALPHALOC ABUTMENT SYSTEM

Recommended closing torque: 30 Ncm. Kit includes: 1 attachment of the given height, 1 stainless steel metal housing, INSTRUCTIONS 4 retentive caps, 1 protective disc, 1 laboratory cap.

MALE PROCESSING PACKAGE

MALE RETENTIVE CAPS

COLOR	Violet (strong retention)	Clear (standard retention)	Pink (soft retention)	Yellow (extra soft retention)
REF. NO.	4876	4877	4878	4879
INCLUDES		4 units	in each kit	

OVERDENTURE RESTORATION

ALPHALOC ACCESSORIES

FEMALE ANALOG

CONTENT	4 Units
REF. NO.	4885

INSERTION TOOL

CONTENT	1 Unit		
REF. NO.	4886		

EXTRACTION TOOL

CONTENT	1 Unit
REF. NO.	4887

LABORATORY CAP (BLACK)

COLOR	Black	
CONTENT	4 Units	
REF. NO.	4882	

BLOCK OUT SPACER

CONTENT	1 Unit			
REF. NO.	4883			

IMPRESSION COPING

35

CAD/CAM RESTORATION PARTS

IMPLANT LEVEL RESTORATION

DUAL USE SCAN BODY

HEIGHT	10 mm
CODE	IOSB-CS
REF. NO.	3837
INSTRUCTIONS	For lab and intra-oral use. Max. 10 Ncm.

STRAIGHT TI-BASES (ENGAGED)

INSTRUCTIONS	For single tooth restoration	n. Recommended closing torque: 3	30 Ncm.
REF. NO.	3832	3840	3842
CODE	TB-0.75-AR-CS	TB-1.5-AR-CS	TB-2.5-AR-CS
HEIGHT	0.75 mm / 4.87 mm	1.5 mm / 5.62 mm	2.5 mm / 6.62 mm

STRAIGHT TI-BASES (NON-ENGAGED)

HEIGHT	0.75 mm / 4.87 mm	1.5 mm / 5.62 mm	2.5 mm / 6.62 mm
CODE	TB-0.75-R-CS	TB-1.5-R-CS	TB-2.5-R-CS
REF. NO.	3833	3841	3843
INSTRUCTIONS	For bar/bridge restoration	. Recommended closing torque: 30	0 Ncm.

PRE-MILLED BLANKS (SCREW INCLUDED)

	DIAMETER	Ø 11.5	Ø 15.8
	CODE	BA_PF_CS	WBA_PF_CS
84	REF. NO.	3854	3855
H	INSTRUCTIONS	For PreFace® abutment holder. Recommended cl	osing torque: 30 Ncm.

ANALOGS

CODE	AN-PM-CS
REF. NO.	3838
INSTRUCTIONS	For printed models

CAD/CAM RESTORATION PARTS

ABUTMENT LEVEL RESTORATION

DUAL USE SCAN BODIES

HEIGHT	7 mm	7 mm
CODE	IOSB-TCT-N-R	IOSB-TCT-N
REF. NO.	3883 (Non-engaged)	5003 (Engaged)
INSTRUCTIONS	For bridge restoration with multi-unit straight and angled abutments. Max. 10 Ncm.	For single crown restoration with multi-unit angled abutments. Use standard driver (4052). Max. 10 Ncm.

ADHESIVE COPING

HEIGHT	3.5 mm	3.5 mm
CODE	TAC-TCT-N	TAC-TCT-N-R
REF. NO.	5028 (Engaged)	5029 (Non-engaged)
INSTRUCTIONS	For single tooth restoration	For bar/bridge restoration

DIRECT MOUNTING*

CODE	S-DM-SR
REF. NO.	4994
INSTRUCTIONS	For direct mounting on metal frame.

^{*} Should not be used for full zirconia or ceramic restorations.

ANALOG FOR TCT-N

CODE	BTT-N
REF. NO.	5211
INSTRUCTIONS	Suitable for TCT-N and TCT-N-R. Also for printed model.

SIRONA COMPATIBLE

STRAIGHT TI BASE

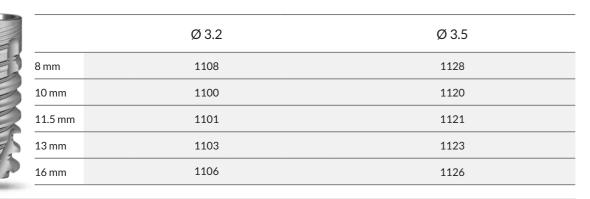
CODE	CSTB-CS-SI
REF. NO.	3856
INSTRUCTIONS	For scan and/or restoration use. Recommended closing torque: 30 Ncm.

SCAN POST

CODE	CSSP-CS-SI
REF. NO.	3857
INSTRUCTIONS	For scanning purpose only. Recommended closing torque: 30 Ncm.

For more information about the libraries go to www.alpha-bio.net.

NEO SYSTEM THE NEXT SENSATION



NICE SYSTEM AN EXTENDED SOLUTION FOR NARROW RIDGES Connection (CHC)

NeO	
BONE TYPES	II, III, IV
UNIQUE DESIGN FEATURES	 Tapered Apical part with centering and anchoring features Two micro threads Platform switching
CLINICAL BENEFITS	 Optimal primary stability High bone preservation Micro threads for 20% increased surface area Increased early BIC

ORDERING INFORMATION

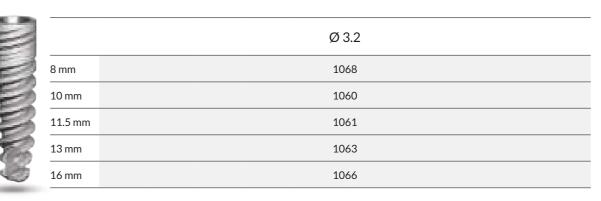
Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STEP DRILLING SEQUENCE

	Soft Bone Type IV	Medium Bo	ne Type II & III		Hard Bone Type I		
Ø 3.2	Ø2.0	Ø2.0	Ø2.4/Ø2.8	Ø2.0	Ø2.4/Ø2.8	Ø 2.8/Ø 3.0	

	Soft Bo	ne Type IV	Medium Bone Type II & III			Hard Bone Type	1		
Ø 3.5	Ø2.0	Ø2.0/Ø2.4	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.0	Ø2.0	Ø2.4/Ø2.8	Ø 2.8/Ø 3.2	

STRAIGHT DRILLING SEQUENCE


	Soft Bone Type IV	Med	lium Bone Type II	& III &		Hard Bone Type I		
Ø 3.2	Ø2.0	Ø2.0	Ø 2.4	Ø 2.8*	Ø2.0	Ø 2.8	Ø 3.0*	

	Soft Bone Type IV		Soft Bone Type IV Medium Bone Type II & III		II & III	Hard Bone Type I			
Ø 3.5	Ø2.0	Ø2.4*	Ø2.0	Ø2.8	Ø 3.0*	Ø2.0	Ø 2.8	Ø 3.2*	

^{* 3} mm shorter than implant's length.

NCF_	
BONE TYPES	I, II, III, IV
UNIQUE DESIGN FEATURES	 Moderately tapared Back tapered coronal part Split coronal micro threads
CLINICAL BENEFITS	 Improved stress distribution Supports wide range of clinical cases Controlled bone penetration

ORDERING INFORMATION

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STRAIGHT DRILLING SEQUENCE

	Soft Bone Type IV Medium Bone Type II & III		Type II & III Hard Bone Type I					
Ø 3.2	Ø2.0	Ø2.0	Ø2.8	*	Ø2.0	Ø2.8	Ø3.0**	

 $^{^{*}}$ In cases of thick cortical layer use 3.0 mm drill only through the cortex.

 $^{^{\}ast\ast}$ 3 mm shorter than implant's length.

INSERTION TOOLS & HEALING ABUTMENTS

IMPLANT INSERTION TOOLS

MANUAL DRIVER 2.1 MM

LENGTH	12 mm
CODE	MITD2.1-CHC
REF. NO.	4147
INSTRUCTIONS	For manual use

INSERTION DRIVERS 2.1 MM

LENGTH	20 mm	15 mm	10 mm			
CODE	ITD2.1L-CHC	ITD2.1-CHC	ITD2.1S-CHC			
REF. NO.	REF. NO. 7301 7305 7302					
INSTRUCTIONS	NSTRUCTIONS Fits hexagonal 6.35 mm or square 4 mm ratchet					

MOTOR MOUNT 2.1 MM

LENGTH	23 mm	16 mm	
CODE	IT2.1L M-CHC	IT2.1S M-CHC	
REF. NO.	7303	7304	
INSTRUCTIONS	To be used with a contra angle motor		

HEALING ABUTMENTS*

Ø 3.4

HEIGHT	2 mm	3 mm	5 mm
CODE	HSD3.4-2-CHC	HSD3.4-3-CHC	HSD3.4-5-CHC
REF. NO.	7311	7312	7313

Ø 3.8

HEIGHT	2 mm	3 mm	5 mm
CODE	HSD3.8-2-CHC	HSD3.8-3-CHC	HSD3.8-5-CHC
REF. NO.	7315	7316	7317

Ø 4.2

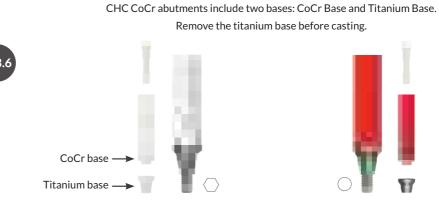
HEIGHT	2 mm	3 mm	5 mm
CODE	HSD4.2-2-CHC	HSD4.2-3-CHC	HSD4.2-5-CHC
REF. NO.	7319	7320	7321

^{*} Recommended closing torque: Max. 10Ncm.

IMPRESSION & CASTING

IMPLANT IMPRESSION

OPEN TRAY TRANSFER	
CODE	HLTO-CHC
REF. NO.	7335
INSTRUCTIONS Supplied with the screw LGP-CHC. Max. 10 Ncm.	


CLOSED TRAY TRANSFER

	3.2
CODE	HLTS-CHC
REF. NO.	7333
INSTRUCTIONS	Supplied with the screw LGP-CHC. Max. 10 Ncm.

IMPLANT ANALOG

CASTING ABUTMENTS**

CoCr MELTING TEMPERATURE	>1290°C - 1380°C	>1290°C - 1380°C
CODE	TLABCC-CHC	TLABCC-R-CHC
REF. NO.	3613	3614

The product design includes two detachable parts: 1. Titanium base

INSTRUCTIONS

2. Plastic sleeve with CoCr base.

Please refer to product's IFU for more information.

^{**} Reccommended closing torque: 20Ncm.

CEMENT-RETAINED RESTORATION

CEMENT-RETAINED RESTORATION

ESTHETIC ABUTMENTS

STRAIGHT Ø 3.6

HEIGHT	1 mm / 8.9 mm	2 mm / 9.9 mm	3 mm / 10.9 mm	4 mm / 11.9 mm	
CODE	ETLASP1-CHC	ETLAPS2-CHC	ETLAPS3-CHC	ETLAPS4-CHC	
REF. NO.	7350	7351	7352	7353	
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.				

WIDE Ø 4.0

HEIGHT	1 mm / 11 mm	2 mm / 12 mm	3 mm / 13 mm	4 mm / 14 mm	5 mm / 15 mm
CODE	ETWASP1-CHC	ETWASP2-CHC	ETWASP3-CHC	ETWASP4-CHC	ETWASP5-CHC
REF. NO.	7370	7371	7372	7373	7374
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.				

STANDARD (DIFFERENT DIAMETERS)

MEASUREMENTS	Ø 3.2 / 9 mm	Ø 3.6 / 9 mm	Ø 4.0 / 11 mm
CODE	ETLAS3.2-CHC	ETLAS3.6-CHC	ETLAS4.0-CHC
REF. NO.	7356	7357	7383
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.		

STANDARD Ø 4.0 / 9.2 MM

CODE	TLAS4.0-CHC
REF. NO.	7358

ANGLED ABUTMENTS

15°

HEIGHT	1.1 mm / 8.2 mm	1.1 mm / 10.2 mm
CODE	ETLA15-CHC	ETLAL15-CHC
REF. NO.	7360	7361
INSTRUCTIONS	Recommended closing torque: 20 Ncm, DO NOT exceed 20 Ncm.	

25°

HEIGHT	1.1 mm / 8.2 mm
CODE	ETLA25-CHC
REF. NO.	7362
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.

ANGLED ANATOMIC ABUTMENTS

15°

HEIGHT	2.5 mm / 8.2 mm 3.5 mm / 10.2 mm 4.5 mm / 8.2 mm			
CODE	EA15-1.5-CHC	EA15-2.5-CHC	EA15-3.5-CHC	
REF. NO.	7363	7364	7365	
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.			

25°

HEIGHT	2.5 mm / 9.5 mm	3.5 mm / 10.5 mm	4.5 mm / 11.5 mm
CODE	EA25-1.5-CHC	EA25-2.5-CHC	EA25-3.5-CHC
REF. NO.	7366	7367	7368
INSTRUCTIONS	Recommended closing torque: 20 Ncm. DO NOT exceed 20 Ncm.		

SCREWS

TYPE	ABUTMENT SCREW
CODE	STLA-CHC
REF. NO.	7345

TYPE	RETRIEVAL SCREW		
CODE	RS-CHC		
REF. NO.	7400		

SCREW-RETAINED RESTORATION

MULTI-UNIT ANGLED ABUTMENTS

17°

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm
CODE	AU 17-1.5-CHC	AU 17-2.5-CHC	AU 17-3.5-CHC
REF. NO.	7482	7483	7484
INSTRUCTIONS	Use 1.25 mm driver. Use 20 Ncm to tighten the abutment screw (see page 20).		

30°

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm	
CODE	AU 30-1.5-CHC	AU 30-2.5-CHC	AU 30-3.5-CHC	
REF. NO.	7487 7488 7489			
INSTRUCTIONS	Use 1.25 mm driver. Use 20 Ncm to tighten the abutment screw (see page 20)			

HEALING ABUTMENTS

CUFF HEIGHT	4 mm	6 mm
CODE	HCT4-N	HCT6-N
REF. NO.	5236	5237
INSTRUCTIONS	Provided with an integral screw. Recommended closing torques 10 Ncm.	

TRANSFERS AND ANALOG

TYPE	Open Tray Transfer	
CODE	TST-N	TCT-N-R
REF. NO.	5231 (Engaged) <u></u>	5248 (Non-engaged)
INSTRUCTIONS	Provided with 6012 screw. Recomm	ended to close manually.

	TYPE	Closed Tray Transfer
nm	CODE	TS-N
	REF. NO.	5235
	INSTRUCTIONS	Recommended to close manually.

TYPE	Analog
MATERIAL	Titanium
CODE	BTT-N
REF. NO.	5211

SCREW-RETAINED RESTORATION

MULTI-UNIT STRAIGHT ABUTMENTS - FOR RESTORATION UP TO 30°

CUFF HEIGHT	0.75 mm	1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm
CODE	TCT-N 0.75-CHC	TCT-N 1.5-CHC	TCT-N 2.5-CHC	TCT-N 3.5-CHC	TCT-N 4.5-CHC	TCT-N 5.5-CHC
REF. NO.	5242	5243	5244	5245	5246	5247
INSTRUCTIONS	Use 1. 5 mm (driver for insertic	on (see page 20). R	Recommended clo	sing torque: 20 N	lcm.*

^{*} Not recommended for single tooth restorations.

TEMPORARY ABUTMENT

MATERIAL	Titanium
CODE	TTA-N
REF. NO.	5216
INSTRUCTIONS	Recommended closing torque: 15 Ncm. Provided with 6092 screw.

BURNOUT SLEEVES

MATERIAL	Plastic	Plastic
CODE	PST-N-AR	PST-N
REF. NO.	5217 (Engaged) <u></u>	5218 (Non-engaged)
INSTRUCTIONS	Recommended closing manually only (without too	ol). Provided with 6093 screw.

SCREW FIXATION

MATERIAL	Titanium	Black coated titanium
CODE	SF-N	SFT-N
REF. NO.	6092	6093
INSTRUCTIONS	Use HTD 1.25 mm for insertion. Screw 6093 is for	laboratory use only.

MULTI UNIT ANGLED ABUTMENTS (TWO-PIECE)

Alpha-Bio Tec strongly encourages its customers to order the new designed AlphaUniverse Multi Unit parts.

If the parts are still not available in your region, due to regulation restrictions, kindly use the below table for ordering:

ALPHA UNIBASE*

	17°X2	17°X3	30°X2	30°X3
REF. NO.	7441	7442	7444	7445
PRO ALPHA UN	ICOVERS*			
CODE	AUC-T CT-N			
REF. NO.	5201			
SCREWS*				
CODE	USP		USL	
REF. NO.	5317		5318	

^{*} For more information see Screw-retained Restoration Line brochure.

OVERDENTURE RESTORATION

OVERDENTURE RESTORATION

ALPHALOC ABUTMENT SYSTEM

STRAIGHT ABUTMENTS (TITANIUM ALLOY WITH TIN COATING)

	-	-	
- 11			 -

CUFF HEIGHT	0.5 mm	1 mm	2 mm	3 mm	4 mm	5 mm
KIT'S REF. NO.	7470	7471	7472	7473	7474	7475

Recommended closing torque: 20 Ncm.

INSTRUCTIONS

Kit includes: 1 attachment of the given height, 1 stainless steel metal housing, 4 retentive caps, 1 protective disc, 1 laboratory cap.

MALE PROCESSING PACKAGE

INCLUDES	Stainless Steel Metal Housing, Block out Spacer, Nylon Replacement Males (violet, clear, pink and yellow), Laboratory cap (black)
REF. NO.	4875

MALE RETENTIVE CAPS

COLOR	Violet (strong retention)	Clear (standard retention)	Pink (soft retention)	Yellow (extra soft retention)
REF. NO.	4876	4877	4878	4879
INCLUDES	4 units in each kit			

BALL ATTACHMENTS SYSTEM

TITANIUM ABUTMENTS

CUFF HEIGHT	1 mm	2 mm	3 mm	4 mm	5 mm
CODE	TB1-CHC	TB2-CHC	TB3-CHC	TB4-CHC	TB4-CHC
REF. NO.	7403	7404	7405	7406	7407
INSTRUCTIONS	Recommended o	losing torque: 20 Ncm	DO NOT exceed 20 N	cm.	

NYLON CAPS

MATERIAL	Stainless Steel Housing	Nylon Cap	Nylon Cap with Titanium Ring	Soft Nylon Cap	
CODE	Н	NC	NCT	NCA	
REF. NO.	6240	6250	6251	6253	

ALPHALOC ACCESSORIES

FEMALE ANALOG

CONTENT	4 Units
REF. NO.	4885

INSERTION TOOL

CONTENT	1 Unit	
REF. NO.	4886	

EXTRACTION TOOL

CONTENT	1 Unit		
REF. NO.	4887		

LABORATORY CAP (BLACK)

COLOR	Black	
CONTENT	4 Units	
REF. NO.	4882	

BLOCK OUT SPACER

CONTENT	1 Unit		
REF. NO.	4883		

IMPRESSION COPING

CONTENT	1 Unit
REF. NO.	4884

CAD/CAM RESTORATION PARTS

CAD/CAM RESTORATION PARTS

IMPLANT LEVEL RESTORATION

DUAL USE SCAN BODY

HEIGHT	10 mm
CODE	SB-CHC
REF. NO.	5021
INSTRUCTIONS	For lab and intra-oral use. Max: 10 Ncm.

STRAIGHT TI-BASES (ENGAGED)

HEIGHT	0.7 mm / 5 mm	2.5 mm / 4 mm
CODE	CCTB-CHC	CCTB-CHC-2.5
REF. NO.	5026	4953
INSTRUCTIONS	For single tooth restoration. Recommended closing torque: 20 Ncm.	

STRAIGHT TI-BASES (NON-ENGAGED)

HEIGHT	0.7 mm / 5 mm	2.5 mm / 4 mm
CODE	CCTB-CHC-R	CCTB-CHC-R-2.5
REF. NO.	5027	4954
INSTRUCTIONS	For bar/bridge restoration. Recommended closing torque: 20 Ncm.	

ANGLED TI-BASE

HEIGHT	0.5 mm / 5 mm
CODE	ACCTB-CHC
REF. NO.	5006
INSTRUCTIONS	For single tooth restoration on an angle. Recommended closing torque: 20 Ncm.

PRE-MILLED BLANK

MEASUREMENTS	Ø 11.5 / 20.2 mm
CODE	BA-PF-CHC
REF. NO.	4990
INSTRUCTIONS	For PreFace® abutment holder. Recommended closing torque: 20 Ncm.

ANALOG

CODE	IA-CHC
REF. NO.	4996
INSTRUCTIONS	For all implant diameters

ABUTMENT LEVEL RESTORATION

DUAL USE SCAN BODIES*

HEIGHT	7 mm	7 mm
CODE	IOSB-TCT-N-R	IOSB-TCT-N
REF. NO.	3883	5003
INSTRUCTIONS	For bridge restoration with multi-unit straight and angled abutments. Max: 10 Ncm.	For single crown restoration with multi-unit angled abutments. Max: 10 Ncm.

^{*} To be used with screw 6092 and 6093.

ADHESIVE COPINGS

HEIGHT	3.5 mm	3.5 mm
CODE	TAC-TCT-N	TAC-TCT-N-R
REF. NO.	5028 (Engaged)	5029 (Non-engaged)
INSTRUCTIONS	For single tooth restoration	For bar/bridge restoration

DIRECT MOUNTING*

CODE	S-DM-SR
REF. NO.	4994
INSTRUCTIONS	For direct mounting on metal frame

^{*} Should not be used for full zirconia or ceramic restorations.

ANALOG FOR TCT-N

CODE	BTT-N
REF. NO.	5211

SIRONA COMPATIBLE

TI BASE

CODE	CCTB-CHC-SI
REF. NO.	4982
INSTRUCTIONS	For scan and/or restoration use. Recommended closing torque: 20 Ncm.

SCAN POST

CODE	CCSP-CHC-SI
REF. NO.	4985
INSTRUCTIONS	For scanning purpose only. Recommended closing torque: 20 Ncm.

For more information about the libraries go to www.alpha-bio.net.

49

NEO SYSTEM THE NEXT SENSATION

_neo

BONE TYPES

II, III, IV

Tapered

UNIQUE DESIGN FEATURES

- Apical part with centering and anchoring features
- Two micro threads
- Platform switching
- Optimal primary stability

CLINICAL BENEFITS

- High bone preservation
- Micro threads for 20% increased surface area
- Increased early BIC

ORDERING INFORMATION

ST.

	Ø 3.75	Ø 4.2	Ø 5.0
8 mm	1168	1178	1188
10 mm	1160	1170	1180
11.5 mm	1161	1171	1181
13 mm	1163	1173	1183
16 mm	1166	1176	N/A

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STEP DRILLING SEQUENCE

NEO SYSTEM THE NEXT SENSATION

	Soft Bo	ne Type IV	Med	ium Bone Type	II & III	Hard Bone Type I					
	Ø2.0	Ø2.4/Ø2.8	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø3.2/Ø3.65 Cortical*		
Ø 3.75	\bigcirc		\bigcirc						Cortical	-	

	Sc	oft Bone Type	:IV	Medi	um Bone Type	e II & III	Hard Bone Type I				
	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø 2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø 2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø3.65/Ø4.1 Cortical*	
Ø4.2				\bigcirc			\bigcirc			eortical Control of the Control of t	

	Soft	t Bone Ty	pe IV	Ме	dium Bor	ne Type II 8	k III			Hard Bo	ne Type I			
Ø 5.0	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø3.65 / Ø4.1	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø3.65 / Ø4.1	Ø4.1 / Ø4.5	Ø4.5 / Ø4.8 Cortical*	1
Ø 3.0								\bigcirc						

 $[\]mbox{\bf *}$ $\mbox{\bf Cortical}$ – Drill through cortical plate with the larger diameter.

STRAIGHT DRILLING SEQUENCE

_ [Sof	ft Bone Type	e IV	Mediu	m Bone Type	e II & III		Hard Bo	ne Type I		
Ø 3.75	Ø 2.0	Ø2.4	Ø2.8**	Ø2.0	Ø 2.8	Ø 3.2**	Ø 2.0	Ø2.8	Ø 3.2**	Ø 3.65 Cortical*	
				\bigcirc							-

	Soft	Bone Typ	e IV	Me	edium Bon	e Type II &	k III		Har	d Bone Ty	/pe l		
	Ø 2.0	Ø 2.8	Ø 3.2**	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65**	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65**	Ø 4.1 Cortical* /	
Ø 4.2								\bigcirc				Cortical	

	S	oft Bon	e Type l	IV	Ν	1edium	Bone Ty	pe II & I	II			Hard	Bone T	ype I			
	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65**	Ø2.0	Ø2.8	Ø3.2	Ø 3.65	Ø 4.1**	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65	Ø4.1	Ø4.5**	Ø4.8 Cortical*	
Ø 5.0					\bigcirc					\bigcirc						Cortical	

^{*} Cortical – Drill through cortical plate

^{** 3}mm shorter than implant's length. Note that drill can be replaced by a corresponding step drill throughout entire implant's length. For more information, see Step protocol.

Spiral THE ORIGINAL SPIRAL IMPLANT

Spiral THE ORIGINAL SPIRAL IMPLANT

BONE TYPES

III, IV

UNIQUE DESIGN FEATURES

- Osteotome-like condensing body
- Pronounced tapered core
- Apical part with sharp deep threads
- High bone condensation
- High initial stability

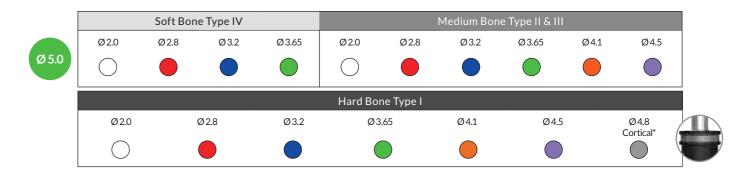
CLINICAL BENEFITS

- Self-drilling
- Redirection ability during placement
- Penetration to small diameters

ORDERING INFORMATION*

and the same of
100
1
The second second second
The second second second
Section 1
-
The state of the s
SALA CONTRACTOR OF THE PARTY OF
The second secon
950
The second second
The second secon
The second secon
The second secon
200
THE RESERVE OF THE PERSON NAMED IN
100
100
-

	Ø 3.3	Ø 3.75	Ø 4.2	Ø 5.0	Ø 6.0
8 mm	1308	1358	1338	1348	1368
10 mm	1300	1350	1330	1340	1360
11.5 mm	1301	1351	1331	1341	1361
13 mm	1303	1353	1333	1343	1363
16 mm	1306	1356	1336	1346	N/A


Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STRAIGHT DRILLING SEQUENCE

	Soft Bone Type IV	Medium Bor	ne Type II & III		Hard Bone Type I		
	Ø2.0	Ø2.0	Ø2.8	Ø2.0	Ø 2.8	Ø 3.2 Cortical*	
Ø 3.3		\bigcirc				Cortical	

	Soft Bone	e Type IV	Mediu	ım Bone Type	II & III		Hard Bo	ne Type I		
	Ø 2.0	Ø2.8	Ø2.0	Ø 2.8	Ø3.2	Ø 2.0	Ø2.8	Ø 3.2	Ø 3.65 Cortical*	
Ø 3.75	\circ		0			\bigcirc				

	Sof	t Bone Typ	e IV	Me	edium Bon	e Type II &	kIII		Har	d Bone Ty	/pe l		
	Ø2.0	Ø2.8	Ø 3.2	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65	Ø2.0	Ø2.8	Ø3.2	Ø 3.65	Ø 4.1 Cortical*	
Ø 4.2												Cortical	

			Soft Bon	e Type IV					Medium	Bone Typ	e II & III			
	Ø2.0	Ø2.8	Ø 3.2	Ø3.65	Ø4.1	Ø4.8	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65	Ø4.1	Ø4.8	Ø 5.2	
Ø 6.0													\bigcirc	
						Har	d Bone Ty	pe l						
	Ø2.0)	Ø 2.8	Ø	3.2	Ø 3.65		Ø4.1	Ø4	1.8	Ø 5.2		Ø 5.8 Cortical*	
											\bigcirc		Ortical	

^{*} Cortical – Drill through cortical plate with the larger diameter.

^{*} For full implants' meaurnments, visit www.alpha-bio.net

ICE IMPLANT FOR CLASSICAL ESTHETICS

BONE TYPES I, II, III, IV Moderately tapared Back tapered coronal part** Split coronal micro threads Improved stress distribution Supports wide range of clinical cases Controlled bone penetration

STEP DRILLING SEQUENCE

	Soft Bor	ne Type IV	Med	ium Bone Type	II & III		Hard Bo	ne Type I		
	Ø2.0	Ø2.0/Ø2.4	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø 3.2/Ø 3.65 Cortical*	
Ø 3.7N	\bigcirc	$\overline{\bigcirc}$	\circ			\bigcirc				

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

	Soft Bo	ne Type IV	Med	ium Bone Type	II & III		Hard Bo	ne Type I		
	Ø2.0	Ø2.4/Ø2.8	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø 3.2/Ø 3.65 Cortical*	
Ø 3.75						\bigcirc				

	S	oft Bone Type	· IV	Medi	um Bone Type	e II & III		Hard Bo	ne Type I		
Ø 4.2	Ø2.0	Ø2.4/Ø2.8	Ø2.8/Ø3.2	Ø 2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø2.0	Ø2.4/Ø2.8	Ø3.2/Ø3.65	Ø3.65/Ø4.1 Cortical*	

	Sof	t Bone Typ	oe IV	М	edium Bor	ne Type II &	III		На	rd Bone Ty	pe I		
0.445	Ø2.0	Ø2.4 / Ø2.8	Ø 3.2 / Ø 3.65	Ø2.0	Ø2.4 /Ø2.8	Ø 3.2 / Ø 3.65	Ø3.65 / Ø4.1	Ø2.0	Ø 2.4 / Ø 2.8	Ø 3.2 / Ø 3.65	Ø3.65 / Ø4.1	Ø 4.1 / Ø 4.5 Cortical*	
Ø 4.65												Cortical	

		Soft Bon	e Type I\	/		Medium	Bone Ty	pe II & II	I			Hard Bo	ne Type	I		
Ø 5.3	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø3.65 / Ø4.1	Ø2.0	Ø2.4 / Ø2.8	Ø3.2 /Ø3.65	Ø3.65 / Ø4.1	Ø4.5 / Ø4.8	Ø2.0	Ø 2.4 / Ø 2.8	Ø 3.2 / Ø 3.65	Ø3.65 / Ø4.1	Ø4.5 / Ø4.8	Ø4.8 / Ø5.2 Cortical*	
y 5.5																

^{*} **Cortical** – Drill through cortical plate with the larger diameter.

ICE IMPLANT FOR CLASSICAL ESTHETICS

ORDERING INFORMATION

3	Ø 3.7N	Ø 3.75	Ø 4.2	Ø 4.65	Ø 5.3
6 mm	N/A	N/A	1056	1036	1046
8 mm	N/A	1018	1028	1038	1048
10 mm	1000	1010	1020	1030	1040
11.5 mm	1001	1011	1021	1031	1041
13 mm	1003	1013	1023	1033	1043
16 mm	N/A	1016	1026	N/A	N/A

STRAIGHT DRILLING SEQUENCE

	Soft Bon	e Type IV	Mediu	ım Bone Type	11 & 111		Hard Bo	ne Type I		
COTA	Ø2.0	Ø2.4**	Ø 2.0	Ø2.8	Ø3.2**	Ø2.0	Ø 2.8	Ø 3.2**	Ø 3.65 Cortical*	
Ø 3.7N	\bigcirc		\bigcirc			\bigcirc				

	Sof	ft Bone Type	: IV	Mediu	Medium Bone Type II & III			Hard Bone Type I			
	Ø2.0	Ø2.4	Ø2.8**	Ø2.0	Ø 2.8	Ø 3.2**	Ø2.0	Ø2.8	Ø3.2**	Ø 3.65 Cortical*	
Ø 3.75											

	Soft	Bone Typ	e IV	Me	edium Bon	e Type II &	k III	Hard Bone Type I					
	Ø2.0	Ø2.8	Ø3.2**	Ø2.0	Ø2.8	Ø3.2	Ø3.65**	Ø 2.0	Ø2.8	Ø3.2	Ø 3.65**	Ø4.1 Cortical*	
Ø 4.2				\bigcirc				\bigcirc				Cortical	

		ne Type IV	Medium Bone Type II & III							
Ø 4.65	Ø2.0	Ø2.8	Ø3.2	Ø 3.65**	Ø2.0	Ø2.8	Ø3.2	Ø 3.65	Ø4.1**	
94.03										
				Н	ard Bone Typ	e I				
	Ø2.0		Ø2.8	Ø3.2		Ø 3.65	Ø4.1**		Ø4.5 Cortical*	
									O	1

		Soft Bone Type IV				Medium Bone Type II & III						
	Ø2.0	Ø 2.8	Ø 3.2	Ø3.65	Ø4.1**	Ø2.0	Ø2.8	Ø3.2	Ø 3.65	Ø4.1	Ø4.5	Ø4.8**
Ø 5.3						0						
						Hard Bo	ne Type I					
	Ø2.0		Ø2.8	Ø 3.2		Ø 3.65	Ø4.1		Ø4.5	Ø4.8**		Ø 5.2 Cortical*
												Ostrical

^{*} Cortical - Drill through cortical plate

For more information, see Step protocol.

^{**} ICE implants with $\emptyset 4.2, \emptyset 4.65$ and $\emptyset 5.3$ in lengths 10 mm and longer.

^{** 3}mm shorter than implant's length. Note that drill can be replaced by a corresponding step drill throughout entire implant's length.

For more information, see Step protocol.

53

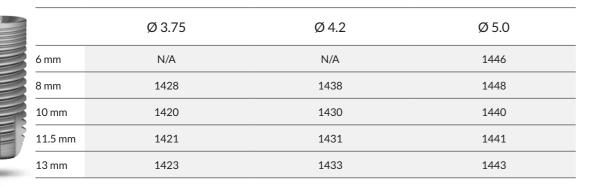
55

ATID STANDARD IMPLANT WITH PARALLEL WALLS

1, 11

BONE TYPES

UNIQUE DESIGN FEATURES


- Cylindrical
- Parallel walls
- Uniformed threads
- High surface area

CLINICAL BENEFITS

- Increased BIC
- Minimal pressure on bone

Homogenic insertion

ORDERING INFORMATION

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STRAIGHT DRILLING SEQUENCE

	Sof	t Bone Type	e IV	Mediu	m Bone Type	e II & III					
COTE	Ø2.0	Ø2.8	Ø3.2 Cortical*	Ø2.0	Ø2.8	Ø3.2	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65 Cortical*	
Ø 3.75											

		Soft Bon	e Type IV	1	Ме	Medium Bone Type II & III				Hard Bone Type I				
	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65 Cortical*	Ø2.0	Ø2.8	Ø3.2	Ø 3.65	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65	Ø 4.1 Cortical* /	
Ø 4.2					\bigcirc				\bigcirc					

			Soft Bon	e Type IV			Medium Bone Type II & III						
750	Ø 2.0	Ø 2.8	Ø 3.2	Ø 3.65	Ø4.1	Ø4.5 Cortical*	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65	Ø4.1	Ø4.5	
Ø 5.0							\bigcirc						
						Hard Bo	ne Type I						ĺ
	Ø 2.0)	Ø2.8		Ø 3.2	Ø3	.65	Ø4.1		Ø4.5		Ø4.8 ortical*	
												Ortical	

^{*} Cortical - Drill through cortical plate

DFI DUAL FIT IMPLANT

BONE TYPES

1, 11, 111

- UNIQUE DESIGN FEATURES
- Double thread design with variable threads
- Apex with cutting flutes

CLINICAL BENEFITS

- Easily stabilized and controlled during placement
- Long-term stability
- Large surface area

• Slightly tapered

ORDERING INFORMATION



	Ø 3.3	Ø 3.75	Ø 4.2	Ø 5.0
8 mm	1288	1268	1278	1298
10 mm	1280	1260	1270	1290
11.5 mm	1281	1261	1271	1291
13 mm	1283	1263	1273	1293

Important: Professional considerations may be required for adaptations of the drill protocol in specific cases.

STRAIGHT DRILLING SEQUENCE

	Soft Bor	ne Type IV	Medium Bon	e Type II & III	Hard Bone Type I		I	
goo	Ø2.0	Ø2.8 Cortical*	Ø2.0	Ø2.8	Ø2.0	Ø2.8	Ø 3.2 Cortical*	1
Ø 3.3								

			Soft Bon	e Type IV			Medium Bone Type II & III					
	Ø2.0	Ø2.8	Ø 3.2	Ø 3.65	Ø4.1	Ø4.5 Cortical*	Ø2.0	Ø 2.8	Ø3.2	Ø 3.65	Ø4.1	Ø4.5
Ø 5.0						Cortical	\bigcirc					
						Hard Bor	ne Type I					
	Ø2.0)	Ø2.8		Ø3.2	Ø3	.65	Ø4.1		Ø4.5		Ø 4.8 ortical*
)									(ortical (

^{*} Cortical - Drill through cortical plate

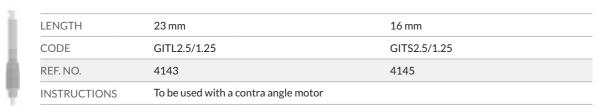
INSERTION TOOLS & HEALING ABUTMENTS

CEMENT-RETAINED RESTORATION

IMPLANT INSERTION TOOLS

I

MANUAL DRIVER 2.5 MM


LENCTH	10
LENGTH	12 mm
CODE	MITD2.5-IH
REF. NO.	4146
INSTRUCTIONS	For manual use

INSERTION DRIVERS 2.5 MM

LENGTH	16 mm	10 mm	6 mm
CODE	G-ITDL2.5	G-ITDM2.5	G-ITDS2.5
REF. NO.	4140	4141	4142
INSTRUCTIONS	Fits hexagonal 6.35 mm	or square 4 mm ratchet	

MOTOR MOUNT 2.5 MM

HEALING ABUTMENTS*

Ø 3.85

HEIGHT	3 mm	4 mm	5 mm	
CODE	HSS3	HSS4	HSS5	
REF. NO.	112	114	113	

Ø 4.6

HEIGHT	2 mm	3 mm	4 mm	5 mm	6 mm	7 mm
CODE	HS2	HS3	HS4	HS5	HS6	HS7
REF. NO.	116	109	117	110	118	119

WIDE HEALING ABUTMENTS

DIAMETER	Ø 5.0	Ø 5.0	Ø 5.5	Ø 5.5	Ø 6.0	Ø 6.0	Ø 7.0
HEIGHT	3 mm	5 mm	3 mm	5 mm	3 mm	5 mm	3 mm
CODE	HS5-3	HS5-5	HS5.5-3	HS5.5-5	HS6-3	HS6-5	HS7-3
REF. NO.	124	125	126	127	128	129	130

 $^{^{\}ast}$ Recommended closing torque: 10Ncm.

IMPLANT IMPRESSION

CODE

OPEN TRAY TRANSFERS

HLTO

REF. NO.	5061	5171
NOTE	Each transfer is supplied with its corresponding sc	rew. Max: 10 Ncm.

HLTOS

CLOSED TRAY TRANSFERS

CODE	HLT	HLTS	HLTLS	
REF. NO.	5060 (Long)	5170	5062 (Slim)	
NOTE	OTE Each transfer is supplied with its corresponding screw. Max: 10 Ncm.			

PLASTIC TRANSFER PICK-UP

CODE	HTLASP
REF. NO.	5364
INSTRUCTIONS	For use with abutments 5366, 5367, 5368, 5369, 5352, 5353, 5354, 5355.

IMPLANT ANALOGS

DIAMETER	Ø 4.2	Ø 5.0	
CODE	IA	IA5	
REF. NO.	5080	5280	
INSTRUCTIONS	5080 is compatible with all implant diameters. 5280 is not compatible with I.C.E and NeO implants.		

CEMENT-RETAINED RESTORATION

CEMENT-RETAINED RESTORATION

TITANIUM ABUTMENTS*

Ų

STRAIGHT Ø 4.5

HEIGHT	1.7 mm / 12.5 mm	1.7 mm / 8.5 mm
CODE	TLAL	TLA
REF. NO.	5140	5030

STRAIGHT Ø 4.8

HEIGHT	1 mm / 8.9 mm	2 mm / 9.9 mm	3 mm / 10.9 mm	4 mm / 11.9 mm
CODE	TLASP1	TLASP2	TLASP3	TLASP4
REF. NO.	5366	5367	5368	5369

SLIM Ø 3.85

НЕ	EIGHT	0.8 mm / 8.5 mm	0.5 mm / 8.5 mm
CC	DDE	TLAS	TLASSP
RE	F. NO.	5150	5403

WIDE - DIFFERENT DIAMETERS

DIAMETER	Ø 5.6	Ø 5.6	Ø 4.5	Ø 4.5	Ø 4.5
HEIGHT	2 mm / 9.5 mm	4 mm / 11.5 mm	1.2 mm / 8.5 mm	3.2 mm / 8.5 mm	3.2 mm / 12.5 mm
CODE	TLAO2	TLAO4	TLAW	TLAWP	TLAWPL
REF. NO.	5182	5362	5340	5401	5402

ANGLED 15°

HEIGHT	1.7 mm / 8.5 mm	1.65 mm / 11.5 mm	2.3 mm / 8.5 mm	1.5 mm / 9 mm
CODE	TLA 15	TLAL 15	TLA 15B	TLA 15BB
REF. NO.	5090	5092	5091	5098

ANGLED 25°

HEIGHT	1.8 mm / 8.5 mm	2.4 mm / 11.5 mm
CODE	TLA 25	TLAL 25
REF. NO.	5130	5134

ANGLED 35°

HEIGHT	1.45 mm / 10 mm			
CODE	TLA 35			
REF. NO.	5136			
INSTRUCTIONS Supplied with a dedicated screw (Ref. No. 5127).				

^{*} Reccommended closing torque: 30Ncm.

TEMPORARY ABUTMENTS

STRAIGHT (PEEK ABUTMENTS)

ANGLED 15° (PEEK ABUTMENTS)

CUFF HEIGHT	1 mm	2 mm	3 mm
CODE	TPA 15-1	TPA 15-2	TPA 15-3
REF. NO.	5419	5420	5421
INSTRUCTIONS	Recommended closing t Vital for 180 days only.	orque: 15 Ncm. Suitable for cen	nent or screw-retained restorations.

ANGLED 25° (PEEK ABUTMENTS)

	INSTRUCTIONS	Recommended closing torque: 15 Ncm. Suitable for Vital for 180 days only.	or cement or screw-retained restorations.
	REF. NO.	5422	5423
7	CODE	TPA 25-1	TPA 25-2
	CUFF HEIGHT	1 mm	2 mm

STRAIGHT (TITANIUM ABUTMENTS)

1.7 mm	1.7 mm
TI AC-AD	TI AC-R
5200 (Engaged) ()	5220 (Non-engaged)
Reccommended closing torque: 30Ncm.	Used for multiple units restorations.
	TLAC-AR 5200 (Engaged)

CEMENT-RETAINED RESTORATION

CASTING & SCREWS

ESTHETIC ABUTMENTS*

STRAIGHT Ø 4.8

HEIGHT	0.9 mm / 8.9 mm	1.9 mm / 9.9 mm	2.9 mm / 10.9 mm	3.9 mm / 11.9 mm
CODE	ETLASP1	ETLASP2	ETLASP3	ETLASP4
REF. NO.	5352	5353	5354	5355
INSTRUCTIONS Use plastic snap transfer (Ref. No. 5364) for closed tray impression.				

STRAIGHT - DIFFERENT DIAMETERS

DIAMETER	Ø 4.5	Ø 3.85
HEIGHT	1.7 mm / 8.5 mm	0.8 mm / 8.5 mm
CODE	ETLA	ETLAS
REF. NO.	5031	5155 (Slim)

4

ANGLED 15°

HEIGHT	1.65 mm / 11.5 mm
CODE	ETLAL 15
REF. NO.	5094

ANGLED 25°

HEIGHT	1.8 mm / 8.5 mm
CODE	ETLAL 25
REF. NO.	5131

ESTHETIC ANATOMIC ABUTMENTS*

ANGLED 15°

DIAMETER	Ø 5.1	Ø 5.1	Ø 5.1	
HEIGHT	1.6 mm / 8.7 mm	2.6 mm / 9.7 mm	3.6 mm / 10.6 mm	
CODE	EAAS 15	EAA 15	EAAH 15	
REF. NO.	5410	5411	5412	
INSTRUCTIONS	INSTRUCTIONS Designed especially for pre-molars and molars.			

ANGLED 25°

DIAMETER	Ø 5.3	Ø 5.3	Ø 5.3
HEIGHT	1.6 mm / 9 mm	2.5 mm / 9.9 mm	3.7 mm / 10.9 mm
CODE	EAAS 25	EAA 25	EAAH 25
REF. NO.	5413	5414	5415
INSTRUCTIONS	Designed especially for pre-molars and molars.		

^{*} Reccommended closing torque: 30Ncm.

CASTING ABUTMENTS*

PLASTIC ABUTMENTS

DIAMETER	Ø 4.5	Ø 4.5	Ø 3.85	Ø 4.5 (Angled)
CUFF HEIGHT	1.7 mm	1.7 mm	N/A	1.7 mm
CODE	PLA	PLA-R	PLAS	PLA 15
REF. NO.	5040 (Engaged)	5041 (Non-engaged)	5050 (Engaged)	5093 (Engaged)
INSTRUCTIONS		can be used for restorationed for restorations on mu		implants. Non-engaged

CoCr BASE ABUTMENTS

CoCr MELTING TEMPERATURE	>1290°C - 1380°C
CODE	TLABCC
REF. NO.	6405 (Engaged)

CoCr MELTING TEMPERATURE	>1290°C - 1380°C
CODE	TLABCC-R Rotational
REF. NO.	6406 (Non-engaged)

SCREWS

USE	FOR CITALIC	FOI IAD	FOI TLASS	Retrievai
CODE	STLAS	STLAT	STLASH	RS
REF. NO.	5122	5121*	5127**	5110***
INSTRUCTIONS	Use 30 Ncm to tighten *Specially coated, for la **Use with TLA35 abut ***Fits IH and CS platfo	aboratory use only. tment only (Ref. No. 5	136).	

^{*} Reccommended closing torque: 30Ncm.

SCREW-RETAINED RESTORATION

MULTI-UNIT ANGLED ABUTMENTS 17°

CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm
CODE	AU 17-1.5 IH	AU 17-2.5 IH	AU 17-2.5 IH
REF. NO.	5432	5433	5434
INSTRUCTIONS	Use 1.25 mm driver for insertio	on (see page 20). Recommended clo	osing torque: 30 Ncm.

30-			
CUFF HEIGHT	1.5 mm	2.5 mm	3.5 mm
CODE	AU 30-1.5 IH	AU 30-2.5 IH	AU 30-2.5 IH
REF. NO.	5437	5438	5439
INSTRUCTIONS	Use 1.25 mm driver for	insertion (see page 20). Recomme	nded closing torque: 30 Ncm.

MULTI-UNIT STRAIGHT ABUTMENTS - FOR RESTORATION UP TO 30°

	INSTRUCTIONS	Use 1.5 mm h	ex driver for inse	rtion (see page 20)). Recommended	d closing torque:	30 Ncm.*
	REF. NO.	5221	5222	5223	5252	5253	5254
•	CODE	TCT0.5-N	TCT1.5-N	TCT2.5-N	TCT3.5-N	TCT4.5-N	TCT5.5-N
	CUFF HEIGHT	0.75 mm	1.6 mm	2.6 mm	3.6 mm	4.6 mm	5.6 mm

^{*} Not recommended for single tooth restorations.

STRAIGHT ABUTMENTS - FOR SINGLE IMPLANT RESTORATION

CUFF HEIGHT	0.5 mm	1.5 mm	2.5 mm
CODE	HBC 0.5	HBC 1.5	HBC 2.5
REF. NO.	6040	6041	6042
NSTRUCTIONS		with 30 Ncm torque. Abutments ar v (6050, 6051, 6052) and a plastic b	• •

HEALING ABUTMENTS

CODF	4 mm	6 mm
CODE	HCT4-N	HCT6-N
REF. NO.	5236	5237
INSTRUCTIONS	Provided with an integral screw. Recommende	ed closing torques 10 Ncm.

SCREW FIXATION

MATERIAL	Titanium	Black coated titanium
CODE	SF-N	SFT-N
REF. NO.	6092	6093
INSTRUCTIONS	Use HTD 1.25 mm for insertion	on. Screw 6093 is for laboratory use only.

SCREW-RETAINED RESTORATION

TRANSFERS AND ANALOG

63

TYPE	Open Tray Transfer	
CODE	TST-N	TCT-N-R
REF. NO.	5231 (Engaged)	5248 (Non-engaged)

Provided with 6012 screw. Recommended to close manually.

	TYPE	Closed Tray Transfer
ım	CODE	TS-N
	REF. NO.	5235
	INSTRUCTIONS	Recommended to close manually.

TYPE	Analog
MATERIAL	Titanium
CODE	BTT-N
REF. NO.	5211

TEMPORARY ABUTMENT

MATERIAL	Titanium
CODE	TTA-N
REF. NO.	5216
INSTRUCTIONS	Recommended closing torque: 25 Ncm. Provided with 6092 screw.

BURNOUT SLEEVES

MATERIAL	Plastic	Plastic
CODE	PST-N-AR	PST-N
REF. NO.	5217 (Engaged) <u></u>	5218 (Non-engaged)
INSTRUCTIONS	Recommended closing manually only	(without tool). Provided with 6093 screw.

MULTI UNIT ANGLED ABUTMENTS (TWO-PIECE)

 $Alpha-Bio\ Tec\ strongly\ encourages\ its\ customers\ to\ order\ the\ new\ designed\ Alpha-Universe\ Multi\ Unit\ parts.$ If the parts are still not available in your region, due to regulation restrictions, kindly use the below table for ordering:

ALPHA UNIBASE*

	17° X 1.5	17° X 2.5	30° X 1.5	30° X 2.5
REF. NO.	5308	5309	5312	5313
PRO ALPHA UN	ICOVERS*			
CODE	AUC-T CT-N			
REF. NO.	5201			
SCREWS*				
CODE	USP		USL	
REF. NO.	5314		5315	

^{*} For more information see Screw-retained Restoration Line brochure.

OVERDENTURE RESTORATION

ALPHALOC ABUTMENT SYSTEM

STRAIGHT ABUTMENTS (TITANIUM ALLOY WITH TIN COATING)

CUFF HEIGHT	0.5 mm	1 mm	2 mm	3 mm	4 mm	5 mm
KIT'S REF. NO.	4867	4868	4869	4870	4871	4872

Recommended closing torque: 30 Ncm.
INSTRUCTIONS
Kit includes: 1 attachment of the given height, 1 stainless steel metal housing, 4 retentive caps, 1 protective disc, 1 laboratory cap.

MALE PROCESSING PACKAGE

INCLUDES	Stainless Steel Metal Housing, Block out Spacer, Nylon Replacement Males (violet, clear, pink and yellow), Laboratory cap (black)
REF. NO.	4875

MALE RETENTIVE CAPS

COLOR	Violet (strong retention)	Clear (standard retention)	Pink (soft retention)	Yellow (extra soft retention)
REF. NO.	4876	4877	4878	4879
INCLUDES	4 units in each kit			

BALL ATTACHMENTS SYSTEM

STRAIGHT BALL ATTACHMENTS

CUFF HEIGHT	1 mm	2 mm	3 mm	4 mm	5 mm	6 mm
CODE	TB 0.5	TB 2	TB 3	TB 4	TB 5	TB 6
REF. NO.	6260	6210	6280	6220	6270	6290
INSTRUCTIONS	•	ion use regular anal ap Ø 2.5 mm.	og and transfer (Se	ee page 57). Use 1.2	5 driver for insertion	on (see page 20).

ANGLED BALL ATTACHMENTS

CUFF HEIGHT	3 mm	4 mm
CODE	TBAA2	TBAA3
REF. NO.	6304	6306
INSTRUCTIONS	Ball is oriented to the flat surface of the hex	

NYLON CAPS

MATERIAL	Stainless Steel Housing	Nylon Cap	Nylon Cap with Titanium Ring	Soft Nylon Cap	
CODE	Н	NC	NCT	NCA	
REF. NO.	6240	6250	6251	6253	

ALPHALOC ACCESSORIES

OVERDENTURE RESTORATION

FEMALE ANALO	OG .	
CONTENT	4 Units	
REF. NO.	4885	

INSERTION TOOL

CONTENT	1 Unit	
REF. NO.	4886	
		1

EXTRACTION TOOL

CONTENT	1 Unit	
REF. NO.	4887	

LABORATORY CAP (BLACK)

COLOR	Black	
CONTENT	4 Units	
REF. NO.	4882	

BLOCK OUT SPACER

CONTENT	1 Unit
REF. NO.	4883

IMPRESSION COPING

CONTENT	1 Unit
REF. NO.	4884

CAD/CAM RESTORATION PARTS

CAD/CAM RESTORATION PARTS

IMPLANT LEVEL RESTORATION

DUAL USE SCAN BODY

HEIGHT	10 mm
CODE	SB-IH
REF. NO.	5019
INSTRUCTIONS	Use standard driver (Ref. No. 4052). Max: 10 Ncm.

STRAIGHT TI-BASES

INSTRUCTIONS	*For single tooth restora Recommended closing t		**For bridges\bars restormended closing t	
REF. NO.	5024 (Engaged)*	4951 (Engaged)*	5025 (Non-Engaged)**	4952 (Non-Engaged)**
CODE	ССТВ	CCTB-2.5	CCTB-R	CCTB-R-2.5
HEIGHT	0.7 mm / 5.7 mm	2.5 mm / 6.5 mm	0.7 mm / 5.7 mm	2.5 mm / 6.5 mm

WIDE TI-BASES

HEIGHT	0.7 mm / 4.2 mm	0.7 mm / 4.2 mm
CODE	WCCTB	WCCTB-R
REF. NO.	5007 (Engaged)	5008 (Non-Engaged)
INSTRUCTIONS	For single tooth restoration. Recommended closing torque: 30 Ncm.	For bridges\bars restoration. Recommended closing torque: 30 Ncm.

ANGLED TI-BASE

HEIGHT	5 mm / 5.5 mm
CODE	ACCTB
REF. NO.	5005
INSTRUCTIONS	For single tooth restoration on an angle. Recommended closing torque: 30 Ncm.

PRE-MILLED BLANK (SCREW INCLUDED)

DIAMETER	Ø 11.5	Ø 15.8
CODE	BA-PF-IH	WBA-PF-IH
REF. NO.	4988	4989
INSTRUCTIONS	For PreFace® abutment holder. Recommended closing torque: 30 Ncm.	

ANALOG

CODE	AN-PM
REF. NO.	4995
INSTRUCTIONS	Used for printed models

ABUTMENT LEVEL RESTORATION

DUAL USE SCAN BODIES

	HEIGHT	7 mm	7 mm
	CODE	IOSB-TCT-N-R	IOSB-TCT-N
	REF. NO.	3883 (Non-engaged)	5003 (Engaged)
J	INSTRUCTIONS	For bridge restoration with multi-unit straight and angled abutments. Max: 10 Ncm.	For single crown restoration with multi-unit angled abutments. Use standard driver (4052). Max: 10 Ncm.

ADHESIVE COPING

	HEIGHT	3.5 mm	3.5 mm
	CODE	TAC-TCT-N	TAC-TCT-N-R
Ь	REF. NO.	5028 (Engaged)	5029 (Non-engaged)
	INSTRUCTIONS	For single tooth restoration	For bar/bridge restoration

DIRECT MOUNTING*

CODE	S-DM-SR
REF. NO.	4994
INSTRUCTIONS	For direct mounting on metal frame.

 $^{^{\}ast}$ Should not be used for full zirconia or ceramic restorations.

ANALOG FOR TCT-N

CODE	BTT-N
REF. NO.	5211
INSTRUCTIONS	Suitable for TCT-N and TCT-N-R. Also for printed model.

SIRONA COMPATIBLE

TI BASE

CODE	CCTB-IH-SI
REF. NO.	4980
INSTRUCTIONS	For scan and/or restoration use. Recommended closing torque: 30 Ncm.

SCAN POST

CODE	CCSP-IH-SI
REF. NO.	4984
INSTRUCTIONS	For scanning purpose only. Recommended closing torque: 30 Ncm.

For more information about the libraries go to www.alpha-bio.net.

REFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
109	HS3	Healing Abutment L3.0mm	56
110	HS5	Healing Abutment L5.0mm	56
112	HSS3	Slim Healing Abutment L3.0mm	56
113	HSS5	Slim Healing Abutment L5.0mm	56
114	HSS4	Slim Healing Abutment L4.0mm	56
116	HS2	Healing Abutment L2.0mm	56
117	HS4	Healing Abutment L4.0mm	56
118	HS6	Healing Abutment L6.0mm	56
119	HS7	Healing Abutment L7.0mm	56
124	HS5-3	Healing Abutment D5.0 H3.0mm	56
125	HS5-5	Healing Abutment D5.0 H5.0mm	56
126	HS5.5-3	Healing Abutment D5.5 L3.0mm	56
127	HS5.5-5	Healing Abutment D5.5 H5.0mm	56
128	HS6-3	Healing Abutment D6.0 H3.0mm	56
129	HS6-5	Healing Abutment D6.0 H5.0mm	56
130	HS7-3	Healing Abutment D7.0 H3.0mm	56
1000	ICE	Implant Classical Esthetic Narrow D3.7mm L10mm	53
1001	ICE	Implant Classical Esthetic Narrow D3.7mm L11.5mm	53
1003	ICE	Implant Classical Esthetic Narrow D3.7mm L13mm	53
1010	ICE	Implant Classical Esthetic D3.75mm L10mm	53
1011	ICE	Implant Classical Esthetic D3.75mm L11.5mm	53
1013	ICE	Implant Classical Esthetic D3.75mm L13mm	53
1016	ICE	Implant Classical Esthetic D3.75mm L16mm	53
1018	ICE	Implant Classical Esthetic D3.75mm L8mm	53
1020	ICE	Implant Classical Esthetic D4.2mm L10mm	53
1021	ICE	Implant Classical Esthetic D4.2mm L11.5mm	53
1023	ICE	Implant Classical Esthetic D4.2mm L13mm	53
1026	ICE	Implant Classical Esthetic D4.2mm L16mm	53
1028	ICE	Implant Classical Esthetic D4.2mm L8mm	53
1030	ICE	Implant Classical Esthetic D4.65mm L10.0mm	53
1031	ICE	Implant Classical Esthetic D4.65mm L11.5mm	53
1033	ICE	Implant Classical Esthetic D4.65mm L13.0mm	53
1036	ICE	Implant Classical Esthetic D4.65mm L6.0mm	53
1038	ICE	Implant Classical Esthetic D4.65mm L8.0mm	53
1040	ICE	Implant Classical Esthetic D5.3mm L10mm	53
1041	ICE	Implant Classical Esthetic D5.3mm L11.5mm	53
1043	ICE	Implant Classical Esthetic D5.3mm L13mm	53
1046	ICE	Implant Classical Esthetic D5.3mm L6mm	53
1048	ICE	Implant Classical Esthetic D5.3mm L8mm	53
1056	ICE	Implant Classical Esthetic D3.3mm Lomm	53
1060	NICE	NICE D3.2mm L10mm	37
1061	NICE	NICE D3.2mm L11.5mm	
			37
1063	NICE	NICE D3.2mm L14mm	37
1066	NICE	NICE D3.2mm L16mm	37

PRODUCTS LIST & REF. NO.

FERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
1100	NEO CHC	Neo C D3.2mm L10.0mm	36
1101	NEO CHC	Neo C D3.2mm L11.5mm	36
1103	NEO CHC	Neo C D3.2mm L13.0mm	36
1106	NEO CHC	Neo C D3.2mm L16.0mm	36
1108	NEO CHC	Neo C D3.2mm L8.0mm	36
1120	NEO CHC	Neo C D3.5mm L10.0mm	36
1121	NEO CHC	Neo C D3.5mm L11.5mm	36
1123	NEO CHC	Neo C D3.5mm L13.0mm	36
1126	NEO CHC	Neo C D3.5mm L16.0mm	36
1128	NEO CHC	Neo C D3.5mm L8.0mm	36
1130	NEO CS	Neo CS D3.75mm L10.0mm	24
1131	NEO CS	Neo CS D3.75mm L11.5mm	24
1133	NEO CS	Neo CS D3.75mm L13.0mm	24
1136	NEO CS	Neo CS D3.75mm L16.0mm	24
1138	NEO CS	Neo CS D3.75mm L8.0mm	24
1140	NEO CS	Neo CS D4.2mm L10.0mm	24
1141	NEO CS	Neo CS D4.2mm L11.5mm	24
1143	NEO CS	Neo CS D4.2mm L13.0mm	24
1146	NEO CS	Neo CS D4.2mm L16.0mm	24
1148	NEO CS	Neo CS D4.2mm L8.0mm	24
1150	NEO CS	Neo CS D5.0mm L10.0mm	24
1151	NEO CS	Neo CS D5.0mm L11.5mm	24
1153	NEO CS	Neo CS D5.0mm L13.0mm	24
1158	NEO CS	Neo CS D5.0mm L8.0mm	24
1160	NEO IH	Neo H D3.75mm L10.0mm	48
1161	NEO IH	Neo H D3.75mm L11.5mm	48
1163	NEO IH	Neo H D3.75mm L13.0mm	48
1166	NEO IH	Neo H D3.75mm L16.0mm	48
1168	NEO IH	Neo H D3.75mm L8.0mm	48
1170	NEO IH	Neo H D4.2mm L10.0mm	48
1171	NEO IH	Neo H D4.2mm L11.5mm	48
1173	NEO IH	Neo H D4.2mm L13.0mm	48
1176	NEO IH	Neo H D4.2mm L16.0mm	48
1178	NEO IH	Neo H D4.2mm L8.0mm	48
1180	NEO IH	Neo H D5.0mm L10.0mm	48
1181	NEO IH	Neo H D5.0mm L11.5mm	48
1183	NEO IH	Neo H D5.0mm L13.0mm	48
1188	NEO IH	Neo H D5.0mm L8.0mm	48
1260	DFI	Dual Fit Implant D3.75mm L10.0mm	55
1261	DFI	Dual Fit Implant D3.75mm L11.5mm	55
1263	DFI	Dual Fit Implant D3.75mm L13.0mm	55
1266	DFI	Dual Fit Implant D3.75mm L16.0mm	55
1268	DFI	Dual Fit Implant D3.75mm L8.0mm	55
1270	DFI	Dual Fit Implant D4.2mm L10.0mm	55
1271	DFI	Dual Fit Implant D4.2mm L11.5mm	55

REFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO.
1273	DFI	Dual Fit Implant D4.2mm L13.0mm	55
1276	DFI	Dual Fit Implant D4.2mm L16.0mm	55
1278	DFI	Dual Fit Implant D4.2mm L8.0mm	55
1280	DFI	Dual Fit Implant D3.3mm L10.0mm	55
1281	DFI	Dual Fit Implant D3.3mm L11.5mm	55
1283	DFI	Dual Fit Implant D3.3mm L13.0mm	55
1286	DFI	Dual Fit Implant D3.3mm L16.0mm	55
1288	DFI	Dual Fit Implant D3.3mm L8.0mm	55
1290	DFI	Dual Fit Implant D5.0mm L10.0mm	55
1291	DFI	Dual Fit Implant D5.0mm L11.5mm	55
1293	DFI	Dual Fit Implant D5.0mm L13.0mm	55
1296	DFI	Dual Fit Implant D5.0mm L16.0mm	55
1298	DFI	Dual Fit Implant D5.0mm L8.0mm	55
1300	SPI	Spiral Implant D3.3mm L10.0mm	50
1301	SPI	Spiral Implant D3.3mm L11.5mm	50
1303	SPI	Spiral Implant D3.3mm L13.0mm	50
1306	SPI	Spiral Implant D3.3mm L16.0mm	50
1308	SPI	Spiral Implant D3.3mm L8.0mm	50
1330	SPI	Spiral Implant D4.2mm L10.0mm	50
1331	SPI	Spiral Implant D4.2mm L11.5mm	50
1333	SPI	Spiral Implant D4.2mm L13.0mm	50
1336	SPI	Spiral Implant D4.2mm L16.0mm	50
1338	SPI	Spiral Implant D4.2mm L8.0mm	50
1340	SPI	Spiral Implant D5.0mm L10.0mm	50
1341	SPI	Spiral Implant D5.0mm L11.5mm	50
1343	SPI	Spiral Implant D5.0mm L13.0mm	50
1346	SPI	Spiral Implant D5.0mm L16.0mm	50
1348	SPI	Spiral Implant D5.0mm L8.0mm	50
1350	SPI	Spiral Implant D3.75mm L10.0mm	50
1351	SPI	Spiral Implant D3.75mm L11.5mm	50
1353	SPI	Spiral Implant D3.75mm L13.0mm	50
1356	SPI	Spiral Implant D3.75mm L16.0mm	50
1358	SPI	Spiral Implant D3.75mm L8.0mm	50
1360	SPI	Spiral Implant D6.0mm L10.0mm	50
1361	SPI	Spiral Implant D6.0mm L11.5mm	50
1363	SPI	Spiral Implant D6.0mm L13.0mm	50
1368	SPI	Spiral Implant D6.0mm L8.0mm	50
1420	ATID	Alpha-Tec Dual Implant D3.75mm L10.0mm	54
1421	ATID	Alpha-Tec Dual Implant D3.75mm L11.5mm	54
1423	ATID	Alpha-Tec Dual Implant D3.75mm L13.0mm	54
1428	ATID	Alpha-Tec Dual Implant D3.75mm L8.0mm	54
1430	ATID	Alpha-Tec Dual Implant D4.2mm L10.0mm	54
1431	ATID	Alpha-Tec Dual Implant D4.2mm L11.5mm	54
1433	ATID	Alpha-Tec Dual Implant D4.2mm L13.0mm	54
1438	ATID	Alpha-Tec Dual Implant D4.2mm L8.0mm	54

PRODUCTS LIST & REF. NO.

EFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE N
1440	ATID	Alpha-Tec Dual Implant D5.0mm L10.0mm	54
1441	ATID	Alpha-Tec Dual Implant D5.0mm L11.5mm	54
1443	ATID	Alpha-Tec Dual Implant D5.0mm L13.0mm	54
1446	ATID	Alpha-Tec Dual Implant D5.0mm L6.0mm	54
1448	ATID	Alpha-Tec Dual Implant D5.0mm L8.0mm	54
3401	HA-D-4-CH-1.5-CS	Healing Abutment D4 L1.5 CS	26
3402	HA-D-4-CH-2.5-CS	Healing Abutment D4 L2.5 CS	26
3403	HA-D-4-CH-3.5-CS	Healing Abutment D4 L3.5 CS	26
3404	HA-D-4-CH-4.5-CS	Healing Abutment D4 L4.5 CS	26
3405	HA-D-4-CH-5.5-CS	Healing Abutment D4 L5.5 CS	26
3407	HA-D-4.9-CH-1.5-CS	Healing Abutment D4.9 L1.5 CS	26
3408	HA-D-4.9-CH-2.5-CS	Healing Abutment D4.9 L2.5 CS	26
3409	HA-D-4.9-CH-3.5-CS	Healing Abutment D4.9 L3.5 CS	26
3410	HA-D-4.9-CH-4.5-CS	Healing Abutment D4.9 L4.5 CS	26
3411	HA-D-4-CH-5.5-CS	Healing Abutment D4.9 L5.5 CS	26
3412	HA-D-6.2-CH-1.5-CS	Healing Abutment D6.2 L1.5 CS	26
3413	HA-D-6.2-CH-2.5-CS	Healing Abutment D6.2 L2.5 CS	26
3613	TLABCC-CHC	Chrome Cobalt Casting Abutment - CHC	39
3614	TLABCC-R-CHC	Chrome Cobalt Casting Abutment Rotational - CHC	39
3450	SCTT-CS	Short Closed Tray Transfer	27
3451	LCTT-CS	Long Closed Tray Transfer	27
3455	RCTT-CS	Short Open Tray Transfer	27
3456	RCTTS-CS	Long Open Tray Transfer	27
3459	IA-CS	Implants Analog CS	27
3501	TLA-H-1.5-CS	Straight Titanium Abutments H1.5mm CS	28
3502	TLA-H-2.5-CS	Straight Titanium Abutments H2.5mm CS	28
3503	TLA-H-3.5-CS	Straight Titanium Abutments H3.5mm CS	28
3504	TLA-H-4.5-CS	Straight Titanium Abutments H4.5mm CS	28
3511	TLA-15-H-1.5-CS	Angled Abutment 15° CH1.5 CS	28
3512	TLA-15-H-2.5-CS	Angled Abutment 15° CH2.5 CS	28
3514	TLA-25-H-1.5-CS	Angled Abutment 25° CH1.5 CS	28
3515	TLA-25-H-2.5-CS	Angled Abutment 25° CH2.5 CS	28
3532	TA-AR-CS	Temporary Titanium Abutments AR	28
3533	TA-R-CS	Temporary Titanium Abutments R	28
3710	AA-0.75-CS	AlphaLoC Kit H 0.75 mm CS	32
3711	AA-1.5-CS	AlphaLoC Kit H 1.5 mm CS	32
3712	AA-2.5-CS	AlphaLoC Kit H 2.5 mm CS	32
3713	AA-3.5-CS	AlphaLoC Kit H 3.5 mm CS	32
3801	ITD2.5 S CS	Implant Grip Driver Short	18, 20
3803	ITD-2.5 L-CS	Implant Grip Driver Long	18, 20
3804	IT-2.5-SM-CS	Motor Mount Driver Short 2.5mm CS	18, 2
3805	IT-2.5-IM-CS	Motor Mount Driver Long 2.5mm CS	18, 2
3806	MITD-2.5-CS	Manual Implant Driver 2.5mm CS	18, 2
3832	TB-0.75-AR-CS	CAD/CAM Straight Ti-Base for restoration on CS implants	34
3833	TB-0.75-R-CS	CAD/CAIVI Straight 11-Dase for restoration on C3 implants	34

75

PRODUCTS LIST & REF. NO.

FERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
3837	IOSB-CS	CAD/CAM Dual-use Scan Body for restoration on CS implants	34
3838	AN-PM-CS	CAD/CAM Dual-use Scan Body for restoration on CS implants	34
3840	TB-1.5-AR-CS	CAD/CAM Straight Ti-Base for restoration on CS implants	34
3841	TB-1.5-R-CS	CAD/CAM Straight Ti-Base for restoration on CS implants	34
3842	TB-2.5-AR-CS	CAD/CAM Straight Ti-Base for restoration on CS implants	34
3843	TB-2.5-R-CS	CAD/CAM Straight Ti-Base for restoration on CS implants	34
3846	CoCr-AR-CHCS	CoCr Casting Abutment AR CS	27
3847	CoCr-R-CHCS	CoCr Casting Abutment R CS	27
3854	BA-PR-CS	CAD/CAM Pre-milled Blank D11.5mm for restoration on CS implants	34
3855	WBA-PF-CS	CAD/CAM Pre-milled Blank D15.8mm for restoration on CS implants	34
3856	CSTB-CS-SI	CAD/CAM SIRONA Straight Ti-Base for restoration on CS implants	35
3857	CSSP-CS-SI	CAD/CAM SIRONA Scan Post for restoration on CS implants	35
3862	AU 17-1.5-CS	Multi Unit Angled abutment 17° 1.5mm for restoration on CS implants	29
3863	AU 17-2.5-CS	Multi Unit Angled abutment 17° 2.5mm for restoration on CS implants	29
3864	AU 17-3.5-CS	Multi Unit Angled abutment 17° 3.5mm for restoration on CS implants	29
3867	AU 30-1.5-CS	Multi Unit Angled abutment 30° 1.5mm for restoration on CS implants	29
3868	AU 30-2.5-CS	Multi Unit Angled abutment 30° 2.5 mm for restoration on CS implants	29
3869	AU 30-3.5-CS	Multi Unit Angled abutment 30° 3.5 mm for restoration on CS implants	29
3870	TCT-0.5-CS	TCT-N L0.5mm abutment for restoration for up to 30° On CS Implants	29
3871	TCT-1.5-CS	TCT-N L1.5mm abutment for restoration for up to 30° On CS Implants	29
3872	TCT-2.5-CS	TCT-N L2.5mm abutment for restoration for up to 30° On CS Implants	29
3876	HBC-H0.75-CS	HBC L0.5mm for Single Implant Restoration on CS Implants	29
3877	HBC-H1.5-CS	HBC L1.5mm for Single Implant Restoration on CS Implants	29
3878	HBC-H2.5-CS	HBC L2.5mm for Single Implant Restoration on CS Implants	29
3883	IOSB-TCT-N-R	Dual Use Scan Body for bridge restoration for multi unit	35, 47,
4014	HTW	Handle Adapter for Hex 6.35mm Drivers	19
4052	HHS1.25	Hand Hex Screw Driver 1.25mm	20
4053	HHSS1.25	Short Hand Hex Screw Driver 1.25mm	20
4055	HTD 1.25	Hex Driver 1.25mm	20
4056	HTD 1.25 S	Short Hex Driver 1.25mm	20
4057	HTD1.5	Short Hex Driver 1.5mm	20
4058	HTD1.5S	Pro Short Hex Driver 1.5mm	20
4059	HHS1.5	Pro Hand Hex Screw Driver 1.5mm	20
4060	HHL1.5	Pro Hand Hex Long Screw Driver 1.5mm	20
4061	HTD 1.25L	Long Hex Driver 1.25mm	20
4071	ITS 2.5/1.25	Short Motor Mount Hex Driver 2.5/1.25mm	19
4072	ITS 2.5	Short Motor Mount Hex Driver 2.5mm	19
4073	IT 2.5	Motor Mount Hex Driver 2.5mm	19
4080	PDG	Parallel Depth Guide	21
4081	PDGS	Short Parallel Depth Guide	21
4082	PG	Drilling Parallel Guide	21
4100	IDG	Implant Depth Probe	21
4140	G-ITDL2.5	Implant Grip Driver Long 2.5mm	56, 1
4141	G-ITDM2.5	Implant Grip Driver Standard 2.5mm	56, 19
4142	G-ITDS2.5	Implant Grip Driver Short 2.5mm	56, 19

PRODUCTS LIST & REF. NO.

ERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE N
4143	GITL2.5/1.25	Motor Mount Grip Driver Long 2.5/1.25mm	56, 1
4145	GITS2.5/1.25	Motor Mount Grip Driver Short 2.5/1.25mm	56, 1
4146	MITD2.5-IH	Implant Hand Driver 2.5mm IH	56, 1
4147	MITD2.1 CHC	Implant Hand Driver 2.1mm CHC	18, 3
4151	ITD 2.5	Long Hex Driver 2.5mm	19
4152	ITD 2.5 S	Hex Driver 2.5mm	19
4153	ITD 2.5 SS	Short Hex Driver 2.5mm	19
4161	IT 2.5M+	Motor Mount Hex Driver 2.5/1.25mm	19
4165	HT 1.25M	Motor Mount Hex Driver 1.25mm	20
4168	HT1.5	Pro Motor Mount Hex Driver 1.5mm	20
4220	SDH	Surgical Screwdriver	21
4240	DX	Drill Extension L17.5mm	17
4303	RB2.3	Round Burr D2.3mm	17
4304	RB3	Round Burr D3.0mm	17
4305	RB4	Round Burr D4.0mm	17
4550	BD2.0	Alpha Straight Drill_D2.0	16
4551	BD2.4	Alpha Straight Drill_D2.4	16
4552	BD2.8	Alpha Straight Drill_D2.8	16
4553	BD3.0	Alpha Straight Drill_D3.0	16
4554	BD3.2	Alpha Straight Drill_D3.2	16
4555	BD3.65	Alpha Straight Drill_D3.65	16
4556	BD4.1	Alpha Straight Drill_D4.1	16
4557	BD4.5	Alpha Straight Drill_D4.5	16
4558	BD4.8	Alpha Straight Drill_D4.8	16
4559	BD5.2	Alpha Straight Drill_D5.2	16
4560	BD5.8	Alpha Straight Drill_D5.8	16
4561	DS-A-L6	Alpha Drill Stopper A-D2.0-2.4 L6	15
4562	DS-A-L8	Alpha Drill Stopper A-D2.0-2.4 L8	15
4563	DS-A-L10	Alpha Drill Stopper A-D2.0-2.4 L10	15
4564	DS-A-L11.5	Alpha Drill Stopper A-D2.0-2.4 L11.5	15
4565	DS-A-L13	Alpha Drill Stopper A-D2.0-2.4 L13	15
4566	DS-B-L6	Alpha Drill Stopper B-D2.8-3.0 L6	15
4567	DS-B-L8	Alpha Drill Stopper B-D2.8-3.0 L8	15
4568	DS-B-L10	Alpha Drill Stopper B-D2.8-3.0 L10	15
4569	DS-B-L11.5	Alpha Drill Stopper B-D2.8-3.0 L11.5	15
4570	DS-B-L13	Alpha Drill Stopper B-D2.8-3.0 L13	15
4572	URT	Universal Torque Ratchet 10-45Ncm	21
4573	DS-C-L6	Alpha Drill Stopper C-D3.2-3.65 L6	15
4574	DS-C-L8	Alpha Drill Stopper C-D3.2-3.65 L8	15
4575	DS-C-L10	Alpha Drill Stopper C-D3.2-3.65 L10	15
4576	DS-C-L11.5	Alpha Drill Stopper C-D3.2-3.65 L11.5	15
4577	DS-C-L13	Alpha Drill Stopper C-D3.2-3.65 L13	15
4578	DS-D-L6	Alpha Drill Stopper D-D4.1-4.5 L6	15
4579	DS-D-L8	Alpha Drill Stopper D-D4.1-4.5 L8	15
4580	DS-D-L10	Alpha Drill Stopper D-D4.1-4.5 L10	15

FERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
4581	DS-D-L11.5	Alpha Drill Stopper D-D4.1-4.5 L11.5	15
4582	DS-D-L13	Alpha Drill Stopper D-D4.1-4.5 L13	15
4590	BSD2.0-2.4	Alpha Step Drill_2.0/2.4	16
4592	BSD2.4-2.8	Alpha Step Drill_2.4/2.8	16
4593	BSD2.8-3.0	Alpha Step Drill_2.8/3.0	16
4594	BSD2.8-3.2	Alpha Step Drill_2.8/3.2	16
4595	BSD3.2-3.65	Alpha Step Drill_3.2/3.65	16
4596	BSD3.65-4.1	Alpha Step Drill_3.65/4.1	16
4597	BSD4.1-4.5	Alpha Step Drill_4.1/4.5	16
4598	BSD4.5-4.8	Alpha Step Drill_4.5/4.8	16
4599	BSD4.8-5.2	Alpha Step Drill_4.8/5.2	16
4611	МКВ	Mini Surgical Organizer Box	12
4612	STOPPER KIT	Stopper kit (Provided with 20 stoppers)	15
4672	CS	Countersink Drill D2.7-5.9mm	17
4712C	MDRX1.5	Marking Drill-Sphere shape 1.5/L16	17
4774	MINI KIT	Step drills mini kit	12
4775	MINI KIT	Step drills mini kit without dish	12
4699	SKB	Surgical kit box	12
4867	AK0.5	AlphaLoC Kit 0.5mm	64
4868	AK1	AlphaLoC Kit 1mm	64
4869	AK2	AlphaLoC Kit 2mm	64
4870	AK3	AlphaLoC Kit 3mm	64
4871	AK4	AlphaLoC Kit 4mm	64
4872	AK5	AlphaLoC Kit 5mm	64
4875	AMPP	AlphaLoC Male Processing Package	32, 44, 6
4876	AMSTR	AlphaLoC Male-Strong violate units (X4)	32, 44, 6
4877	AMSTA	AlphaLoC Male-Standard white units (X4)	32, 44, 6
4878	AMSOF	AlphaLoC Male-Soft pink units (X4)	32, 44, 6
4879	AMESO	AlphaLoC Male-Extra Soft yellow (X4)	32, 44, 6
4882	AML	AlphaLoC Male-Laboratory black units(X4)	33, 45, 6
4883	ABOS	AlphaLoC Block Out Spacer	33, 45, 6
4884	AIC	AlphaLoC Impression Coping (X4)	33, 45, 6
4885	AFA	AlphaLoC Female Analog (X4)	33, 45, 6
4886	AIT	AlphaLoC Insertion Tool	33, 45, 6
4887	AET	AlphaLoC Extraction Tool	33, 45, 6
4940	DRT 4	Trephine Drill D4.0mm	17
4950	DRT 5	Trephine Drill D5.0mm	17
4951	CCTB-2.5	CAD/CAM TiBase for single tooth restoration on IH implants	66
4952	CCTB-R-2.5	CAD/CAM Titanium Base-R for bar\bridge restoration on IH implants	66
4953	CCTB-CHC-2.5	CAD/CAM TiBase for single tooth restoration on CHC implants	46
4954	CCTB-R-CHC-2.5	CAD/CAM TiBase for bar\bridge restoration on CHC implants	46
4980	CCTB-IH-SI	CAD/CAM Sirona Ti=Base for scan or restoration on IH Implants	67
4982	CCTB-CHC-SI	CAD/CAM Sirona Ti=Base for scan or restoration on CHC Implants	47
4984	CCSP-IH-SI	CAD/CAM Sirona Scan Post for restoration on IH Implants	67
-	**		

PRODUCTS LIST & REF. NO.

EFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
4988	BA-PF-IH	CAD/CAM Pre-milled blanks for restoration on IH implants	66
4989	WBA-PF-IH	CAD/CAM Pre-milled wide blanks for restoration on IH implants	66
4990	BA-PF-CHC	CAD/CAM Pre-milled blanks for restoration on CHC implants	46
4994	S-DM-SR	CAD/CAM screw for direct mounting for restoration on TCT-N	35, 47, 6
4995	AN-PM	CAD\CAM Analog for printed models for restoration on IH implants	66
4996	AN-PM-CHC	CAD\CAM Analog for printed models for restoration on CHC implants	46
5003	IOSB-TCT-N	Dual Use Scan Body for lab	35, 47, 6
5005	ACCTB	CAD/CAM Angled TiBase restoration on IH implants	66
5006	ACCTB	CAD/CAM Angled TiBase restoration on CHC implants	46
5007	WCCTB	CAD/CAM TiBase Wide for restoration on IH implants	66
5008	WCCTB-R	CAD/CAM TiBase R Wide for restoration on IH implants	66
5019	SB-IH	CAD/CAM Dual-use Scan Body for restoration on IH implants	66
5024	ССТВ	CAD/CAM Titanium Base for single tooth restoration on IH implants	66
5025	CCTB-R	CAD/CAM Titanium Base-R for bar\bridge restoration on IH implants	66
5026	CCTB-CHC	CAD/CAM Titanium Base- for single tooth restoration on CHC implants	46
5027	CCTB-CHC-R	CAD/CAM Titanium Base for bar\bridge restoration on CHC implants	46
5028	TAC-TCT-N	CAD/CAM Adhesive coping TCT-N for single tooth	35, 47, 6
5029	TAC-TCT-N-R	CAD/CAM Adhesive coping TCT-N for bar\bridge	35, 47,
5030	TLA	Straight Titanium Abutment	58
5031	ETLA	Esthetic Straight Titanium Abutment	40
5040	PLA	Straight Plastic Abutment Anti Rotation	61
5041	PLA-R	Straight Plastic Abutment Rotation	61
5050	PLAS	Slim Straight Plastic Abutment	61
5060	HLT	Closed Tray Transfer	57
5061	HLTO	Open Tray Transfer	57
5062	HLTLS	Slim Closed Tray Transfer	57
5080	IA	Implant Analog	57
5090	TLA15	Angled Titanium Abutment 15°	58
5091	TLA15B	Angled Titanium Abutment 15° with Shoulder	58
5092	TLAL15	Long Angled Titanium Abutment 15°	58
5093	PLA15	Angled Plastic Abutment 15°	61
5094	ETLAL15	Esthetic Long Angled Titanium Abutment 15°	60
5098	TLA15BB	Long Angled Titanium Abutment 15° with Shoulder	58
5110	RS	Retrieval Screw	61
5121	STLAT	Torqfit Abutment Screw	61
5122	STLAS	Short Titanium Abutment Screw L8.3mm	61
5127	STLASH	Titanium Abutment Screw L7.6mm	61
5130	TLA25	Angled Titanium Abutment 25°	58
5131	ETLA25	Esthetic Angled Titanium Abutment 25°	60
5134	TLAL25	Titanium Lock Abutment 25° Long	58
5136	TLA35	Titanium Lock Abutment Angled 35°	58
5140	TLAL	Long Straight Titanium Abutment	58
5150	TLAS	Slim Straight Titanium Abutment	58
5155	ETLAS	Esthetic Slim Long Straight Titanium Abutment	60
5170	HLTS	Short Closed Tray Transfer	57

EFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO.
5171	HLTOS	Short Open Tray Transfer	57
5182	TLAO2	Omni Titanium Abutment Cuff H2.0mm	58
5200	TLAC-AR	Temporary Titanium Abutment Anti Rotation	59
5211	BTT-N	Pro Analog for TCT-N	30, 35, 42, 47, 63,
5216	TTA-N	Pro Temporary Titanium Abutment for TCT-N	31, 43, 63
5217	PST-N-AR	Pro Burnout Anti Rotation Sleeve for TCT-N	31, 43, 63
5218	PST-N	Pro Burnout Sleeve for TCT-N	31, 43, 63
5220	TLAC-R	Temporary Titanium Abutment Rotation	59
5221	TCT0.5-N	Pro Tapered Connection Abutment L 0.5mm	62
5222	TCT1.5-N	Pro Tapered Connection Abutment L 1.5mm	62
5223	TCT2.5-N	Pro Tapered Connection Abutment L 2.5mm	62
5231	TST-N	Pro Open Tray Transfer for TCT-N/AUC-TCT-N	30, 42, 36
5235	TS-N	Pro Close Tray Transfer for TCT-N/TSA-N abutments	30, 42, 36
5236	HCT4-N	Pro Healing Abutment L4mm for TCT-N/AUC-TCT-N	30, 42, 36
5237	HCT6-N	Pro Healing Abutment L6mm for TCT-N/AUC-TCT-N	30, 42, 36
5242	TCT-N 0.75 CHC	Pro TCT-N L0.75mm abutments for restoration for up to 30°	43
5243	TCT-N 1.5 CHC	Pro TCT-N L1.5mm abutments for restoration for up to 30°	43
5244	TCT-N 2.5 CHC	Pro TCT-N L2.5mm abutments for restoration for up to 30°	43
5245	TCT-N 3.5 CHC	Pro TCT-N L3.5mm abutments for restoration for up to 30°	43
5246	TCT-N 4.5 CHC	Pro TCT-N L4.5mm abutments for restoration for up to 30°	43
5247	TCT-N 5.5 CHC	Pro TCT-N L5.5mm abutments for restoration for up to 30°	43
5248	TCT-N-R	Pro Open Tray Transfer for TCT-N	30, 42, 63
5252	TCT3.5-N	Pro Tapered Connection Abutment L 3.5mm	62
5253	TCT4.5-N	Pro Tapered Connection Abutment L 4.5mm	62
5254	TCT5.5-N	Pro Tapered Connection Abutment L 5.5mm	62
5280	IA5	Implant Analog D5.0mm	57
5340	TLAW	Wide Straight Titanium Abutment	58
5352	ETLASP1	Simply Esthetic Straight Titanium Abutment H1mm	60
5353	ETLASP2	Simply Esthetic Straight Titanium Abutment H2mm	60
5354	ETLASP3	Simply Esthetic Straight Titanium Abutment H3mm	60
5355	ETLASP4	Simply Esthetic Straight Titanium Abutment H4mm	60
5362	TLAO4	Omni Titanium Abutment Cuff H4.0mm	58
5364	HTLASP	Simply Close Tray Plastic Transfer	27,57
5366	TLASP1	Simply Straight Titanium Abutment Cuff H1.0mm	58
5367	TLASP2	Simply Straight Titanium Abutment Cuff H2.0mm	58
5368	TLASP3	Simply Straight Titanium Abutment Cuff H3.0mm	58
5369	TLASP4	Simply Straight Titanium Abutment Cuff H4.0mm	58
5401	TLAWP	Straight Titanium Abutment Wide Profile	58
5402	TLAWPL	Straight Long Titanium Abutment Wide Profile	58
5403	TLASSP	Slim Titanium Abutment with Short Platform	58
5410	EAAS15	Short Esthetic Anatomic Abutment 15°	60
5411	EAA15	Esthetic Anatomic Abutment 15°	60
5412	EAAH15	High Esthetic Anatomic Abutment 15°	60
5413	EAAS25	Short Esthetic Anatomic Abutment 25°	60

PRODUCTS LIST & REF. NO.

REFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO.
5415	EAAH25	High Esthetic Anatomic Abutment 25°	60
5416	TPA 1	Straight temporary PEEK Abutment H 1.0	59
5417	TPA 2	Straight temporary PEEK abutment H 2.0	59
5418	TPA 3	Straight temporary PEEK abutment H 3.0	59
5419	TPA15-1	Temporary PEEK abutment 15° H1.0	59
5420	TPA15-2	Temporary PEEK abutment 15° H 2.0	59
5421	TPA15-3	Temporary PEEK abutment 15° H 3.0	59
5422	TPA25-1	Temporary PEEK abutment 25° H 1.0	59
5423	TPA25-2	Temporary PEEK abutment 25° H 2.0	59
5432	AU 17-1.5 HI	Multi Unit Angled abutment 17° 1.5mm for restoration on IH implants	62
5433	AU 17-2.5 HI	Multi Unit Angled abutment 17° 2.5mm for restoration on IH implants	62
5434	AU 17-3.5 HI	Multi Unit Angled abutment 17° 3.5mm for restoration on IH implants	62
5437	AU 30-1.5 HI	Multi Unit Angled abutment 30° 1.5mm for restoration on IH implants	62
5438	AU 30-2.5 HI	Multi Unit Angled abutment 30° 2.5mm for restoration on IH implants	62
5439	AU 30-3.5 HI	Multi Unit Angled abutment 30° 3.5mm for restoration on IH implants	62
6012	SFL-N	Screw For Open Tray Transfer TCT-N/TSA-N	30, 42, 63
6040	HBC0.5	Hex Base Connection L 0.5mm	62
6041	HBC1.5	Hex Base Connection L 1.5mm	62
6042	HBC2.5	Hex Base Connection L 2.5mm	62
6050	LS0.5	Screw for HBC L0.5mm (Part of HBC Kit)	62
6051	LS1.5	Screw for HBC L1.5mm (Part of HBC Kit)	62
6052	LS2.5	Screw for HBC L2.5mm (Part of HBC Kit)	62
6070	PST-AR	Plastic Sleeve Anti Rotation (Part of HBC Kit)	62
6092	SF-N	Fixation Screw SF-N	31, 43, 62
6093	SFT-N	Fixation Torqfit Screw SFT-N	31, 43, 62
6210	TB2	Titanium Ball Abutment L2.0mm	64
6220	TB4	Titanium Ball Abutment L4.0mm	64
6240	Н	Metal Housing for Ball Attachment	44, 64
6250	NC	Standard Nylon Cap	44, 64
6251	NCT	Nylon Cap with Titanium Ring	44, 64
6253	NCA	Soft Nylon Cap	44, 64
6260	TB0.5	Titanium Ball Abutment L 0.5mm	64
6270	TB5	Titanium Ball Abutment L5.0mm	64
6280	TB3	Titanium Ball Abutment L3.0mm	64
6290	TB6	Titanium Ball Abutment L6.0mm	64
6304	TBAA2	Angled Titanium Side Ball Abutment L2.0mm	64
6306	TBAA3	Angled Titanium Side Ball Abutment L3.0mm	64
6405	TLABCC	Chrome Cobalt Casting Abutment	61
6406	TLABCC-R	Chrome Cobalt Casting Abutment Rotational	15
65080	GSTK	Guided Surgery Entry Level Kit	15
65081	GSTK	Guided Surgery Entry Level Extension Kit	15
65000	GSTK	GSTK kit for IH and CHC	15
65002	GSTK	GSTK kit for CS and CHC	15
65003	GSTK	GSTK kit for CS, CHC and IH	15
66013	SLL	Master Sleeve 5.5 for drilling and implant insertion	15
00013	JLL	Master Siecke 3.3 for arming and implantinsertion	13

RENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE N
66014	SLSE	Master Sleeve to support lateral pin	15
65058	SLSA	Sleeve Adaptor 4.1	15
66012	SLS	Master Sleeve 4.1 for drilling and implant insertion	16
7301	ITD2.1L-CHC	Implant Driver Long 2.1mm CHC	16
7302	ITD2.1S-CHC	Implant Driver Short 2.1mm CHC	16
7303	IT2.1LM -CHC	Motor Mount Driver Long 2.1mm CHC	16
7304	IT2.1SM -CHC	Motor Mount Driver Short 2.1mm CHC	16
7305	ITD2.1-CHC	Implant Driver Standard 2.1mm CHC	16
7311	HSD3.4-2-CHC	Healing Abutment D3.4 L2 CHC	16
7312	HSD3.4-3-CHC	Healing Abutment D3.4 L3 CHC	16
7313	HSD3.4-5-CHC	Healing Abutment D3.4 L5 CHC	16
7315	HSD3.8-2-CHC	Healing Abutment D3.8 L2 CHC	12
7316	HSD3.8-3-CHC	Healing Abutment D3.8 L3 CHC	15
7317	HSD3.8-5-CHC	Healing Abutment D3.8 L5 CHC	17
7319	HSD4.2-2-CHC	Healing Abutment D4.2 L2 CHC	17
7320	HSD4.2-3-CHC	Healing Abutment D4.2 L3 CHC	12
7321	HSD4.2-5-CHC	Healing Abutment D4.2 L5 CHC	12
7333	HLTS-CHC	Closed Tray Transfer CHC	12
7335	HLTO-CHC	Long Open Tray Transfer CHC	64
7338	IA-CHC	Implant Analog CHC	64
7345	STLA-CHC	Abutment Screw CHC	64
7350	ETLASP1-CHC	Esthetic Simply Straight Abutment H1.0mm CHC	64
7351	ETLASP2-CHC	Esthetic Simply Straight Abutment H2.0mm CHC	64
7352	ETLASP3 -CHC	Esthetic Simply Straight Abutment H3.0mm CHC	64
7353	ETLASP4-CHC	Esthetic Simply Straight Abutment H4.0mm CHC	32, 44
7356	ETLAS3.2-CHC	Esthetic Standard Slim Abutment D3.2 CHC	32, 44
7357	ETLAS3.6-CHC	Esthetic Standard Abutment D3.6 CHC	32, 44
7358	TLAS4.0-CHC	Standard Abutment D4.0 CHC	32, 44,
7360	ETLA15-CHC	Esthetic Angled Titanium Abutment 15° CHC	32, 44
7361	ETLAL15-CHC	Esthetic Angled Long Titanium Abutment 15° CHC	33, 45,
7362	ETLA25-CHC	Esthetic Angled Titanium Abutment 25° CHC	33, 45
7363	EA15-1.5-CHC	Esthetic Anatomic 15° Angled Titanium Abutment H1.5mm CHC	33, 45
7364	EA15-2.5-CHC	Esthetic Anatomic 15° Angled Titanium Abutment H2.5mm CHC	33, 45,
7365	EA15-3.5-CHC	Esthetic Anatomic 15° Angled Titanium Abutment H3.5mm CHC	33, 45,
7366	EA25-1.5-CHC	Esthetic Anatomic 25° Angled Titanium Abutment H1.5mm CHC	33, 45,
7367	EA25-2.5-CHC	Esthetic Anatomic 25° Angled Titanium Abutment H2.5mm CHC	17
7368	EA25-3.5-CHC	Esthetic Anatomic 25° Angled Titanium Abutment H3.5mm CHC	17
7370	ETWASP1-CHC	Esthetic Simply Straight Wide Abutments H1.0mm CHC	66
7371	ETWASP2-CHC	Esthetic Simply Straight Wide Abutments H2.0mm CHC	40
7372	ETWASP3-CHC	Esthetic Simply Straight Wide Abutments H3.0mm CHC	40
7373	ETWASP4-CHC	Esthetic Simply Straight Wide Abutments H4.0mm CHC	40
7374	ETWASP5-CHC	Esthetic Simply Straight Wide Abutments H5.0mm CHC	40
7383	ETLAS4.0-CHC	Esthetic Standard Abutment D4.0 CHC	40
7400	RS-CHC	Retrieval Screw CHC	41
7403	TB1-CHC	Titanium Ball Abutment 2.5mm L 1mm CHC	44

PRODUCTS LIST & REF. NO.

REFERENCE NUMBER	CODE	PRODUCT DESCRIPTION	PAGE NO
7404	TB2-CHC	Titanium Ball Abutment 2.5mm L 2mm CHC	44
7405	TB3-CHC	Titanium Ball Abutment 2.5mm L 3mm CHC	44
7406	TB4-CHC	Titanium Ball Abutment 2.5mm L 4mm CHC	44
7407	TB5-CHC	Titanium Ball Abutment 2.5mm L 5mm CHC	44
7470	AK0.5-CHC	AlphaLoC Kit 0.5mm for restoration on CHC implants	44
7471	AK1-CHC	AlphaLoC Kit 1mm for restoration on CHC implants	44
7472	AK2-CHC	AlphaLoC Kit 2mm for restoration on CHC implants	44
7473	AK3-CHC	AlphaLoC Kit 3mm for restoration on CHC implants	44
7474	AK4-CHC	AlphaLoC Kit 4mm for restoration on CHC implants	44
7475	AK5-CHC	AlphaLoC Kit 5mm for restoration on CHC implants	44
7482	AU 17-1.5 CHC	Multi Unit Angled abutment 17° 1.5mm for restoration on CHC implants	42
7483	AU 17-2.5 CHC	Multi Unit Angled abutment 17° 2.5mm for restoration on CHC implants	42
7484	AU 17-3.5 CHC	Multi Unit Angled abutment 17° 3.5mm for restoration on CHC implants	42
7487	AU 30-1.5 CHC	Multi Unit Angled abutment 30° 1.5mm for restoration on CHC implants	42
7488	AU 30-2.5 CHC	Multi Unit Angled abutment 30° 2.5mm for restoration on CHC implants	42
7489	AU 30-3.5 CHC	Multi Unit Angled abutment 30° 3.5mm for restoration on CHC implants	42

Alpha-Bio Tec Warranty

Alpha-Bio Tec continually strives to update and improve its products; hence we reserve the right to modify designs, products and/or techniques when we feel it is warranted. We also reserve the right to change prices, policies and terms without prior notice. Product availability may vary between countries. Some products may not be available in the USA.

Warranty: Alpha-Bio Tec makes no warranty, expressed or implied, except that all products will be free of defects in materials and/or workmanship. This warranty applies to the original purchaser. In the event of a product defect, please notify Alpha-Bio Tec in writing prior to returning the product.

Alpha-Bio Tec will then, at its discretion, repair, replace or issue a credit for defective merchandise.

The purchaser assumes all risk and liabilities from the use of these products, whether used separately or in conjunction with products not of Alpha-Bio Tec's manufacture.

Alpha-Bio Tec strongly recommends completion of post-graduate implant education and adherence to all technical procedures and instructions. Federal law permits the sale of these products to licensed physicians and dental practitioners only. Products in this catalog may be protected by more than one patent.

Copyright © Alpha-Bio Tec Ltd. All rights reserved. Important - Read instructions before use.

This is why we can provide you with a Lifetime Warranty for our wide range of implants (not including provisional implants). In any case of a defect in the implant, implant rejection, fracture or contamination of the product, subject to filing a complaint report, Alpha-Bio Tec shall replace the defective merchandise.

Warranty: Alpha-Bio Tec warrants that all Implants will be free of defects in materials and/or workmanship. This warranty applies to the original purchaser only. There are no warranties, express or implied, except this warranty, which is given in lieu of any other warranties, express or implied, including any implied warranty of fitness for a particular purpose.

Important - Read instructions before use.

A complaint report is available at Alpha-Bio Tec's customer service and will be sent upon demand.

Simplantology, In Everything We Do

Alpha-Bio Tec's products are cleared for marketing in the USA* and are CE-marked in accordance with the Council Directive 93/42/EEC. Alpha-Bio Tec's complies with EN ISO 13485:2016. Product availability may vary between countries.

